Proof of Theorem elsprel
| Step | Hyp | Ref
| Expression |
| 1 | | elex 3485 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| 2 | | elex 3485 |
. . . 4
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) |
| 3 | 1, 2 | orim12i 908 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 ∈ V ∨ 𝐵 ∈ V)) |
| 4 | | elisset 2817 |
. . . . . . 7
⊢ (𝐴 ∈ V → ∃𝑎 𝑎 = 𝐴) |
| 5 | | elisset 2817 |
. . . . . . 7
⊢ (𝐵 ∈ V → ∃𝑏 𝑏 = 𝐵) |
| 6 | | exdistrv 1955 |
. . . . . . . 8
⊢
(∃𝑎∃𝑏(𝑎 = 𝐴 ∧ 𝑏 = 𝐵) ↔ (∃𝑎 𝑎 = 𝐴 ∧ ∃𝑏 𝑏 = 𝐵)) |
| 7 | | preq12 4716 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → {𝑎, 𝑏} = {𝐴, 𝐵}) |
| 8 | 7 | eqcomd 2742 |
. . . . . . . . 9
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → {𝐴, 𝐵} = {𝑎, 𝑏}) |
| 9 | 8 | 2eximi 1836 |
. . . . . . . 8
⊢
(∃𝑎∃𝑏(𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) |
| 10 | 6, 9 | sylbir 235 |
. . . . . . 7
⊢
((∃𝑎 𝑎 = 𝐴 ∧ ∃𝑏 𝑏 = 𝐵) → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) |
| 11 | 4, 5, 10 | syl2an 596 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) |
| 12 | 11 | expcom 413 |
. . . . 5
⊢ (𝐵 ∈ V → (𝐴 ∈ V → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏})) |
| 13 | | preq2 4715 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑎 → {𝑎, 𝑏} = {𝑎, 𝑎}) |
| 14 | 13 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑎 ∧ 𝑎 = 𝐴) → {𝑎, 𝑏} = {𝑎, 𝑎}) |
| 15 | | dfsn2 4619 |
. . . . . . . . . . . . . 14
⊢ {𝑎} = {𝑎, 𝑎} |
| 16 | | sneq 4616 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) |
| 17 | 16 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 𝑎 ∧ 𝑎 = 𝐴) → {𝑎} = {𝐴}) |
| 18 | 15, 17 | eqtr3id 2785 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑎 ∧ 𝑎 = 𝐴) → {𝑎, 𝑎} = {𝐴}) |
| 19 | 14, 18 | eqtr2d 2772 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 𝑎 ∧ 𝑎 = 𝐴) → {𝐴} = {𝑎, 𝑏}) |
| 20 | 19 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑎 → (𝑎 = 𝐴 → {𝐴} = {𝑎, 𝑏})) |
| 21 | 20 | spimevw 1985 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → ∃𝑏{𝐴} = {𝑎, 𝑏}) |
| 22 | 21 | adantl 481 |
. . . . . . . . 9
⊢ ((¬
𝐵 ∈ V ∧ 𝑎 = 𝐴) → ∃𝑏{𝐴} = {𝑎, 𝑏}) |
| 23 | | prprc2 4747 |
. . . . . . . . . . . 12
⊢ (¬
𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
| 24 | 23 | adantr 480 |
. . . . . . . . . . 11
⊢ ((¬
𝐵 ∈ V ∧ 𝑎 = 𝐴) → {𝐴, 𝐵} = {𝐴}) |
| 25 | 24 | eqeq1d 2738 |
. . . . . . . . . 10
⊢ ((¬
𝐵 ∈ V ∧ 𝑎 = 𝐴) → ({𝐴, 𝐵} = {𝑎, 𝑏} ↔ {𝐴} = {𝑎, 𝑏})) |
| 26 | 25 | exbidv 1921 |
. . . . . . . . 9
⊢ ((¬
𝐵 ∈ V ∧ 𝑎 = 𝐴) → (∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏} ↔ ∃𝑏{𝐴} = {𝑎, 𝑏})) |
| 27 | 22, 26 | mpbird 257 |
. . . . . . . 8
⊢ ((¬
𝐵 ∈ V ∧ 𝑎 = 𝐴) → ∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) |
| 28 | 27 | ex 412 |
. . . . . . 7
⊢ (¬
𝐵 ∈ V → (𝑎 = 𝐴 → ∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏})) |
| 29 | 28 | eximdv 1917 |
. . . . . 6
⊢ (¬
𝐵 ∈ V →
(∃𝑎 𝑎 = 𝐴 → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏})) |
| 30 | 4, 29 | syl5 34 |
. . . . 5
⊢ (¬
𝐵 ∈ V → (𝐴 ∈ V → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏})) |
| 31 | 12, 30 | pm2.61i 182 |
. . . 4
⊢ (𝐴 ∈ V → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) |
| 32 | 11 | ex 412 |
. . . . 5
⊢ (𝐴 ∈ V → (𝐵 ∈ V → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏})) |
| 33 | | preq1 4714 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑏 → {𝑎, 𝑏} = {𝑏, 𝑏}) |
| 34 | 33 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = 𝑏 ∧ 𝑏 = 𝐵) → {𝑎, 𝑏} = {𝑏, 𝑏}) |
| 35 | | dfsn2 4619 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑏} = {𝑏, 𝑏} |
| 36 | | sneq 4616 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) |
| 37 | 36 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 = 𝑏 ∧ 𝑏 = 𝐵) → {𝑏} = {𝐵}) |
| 38 | 35, 37 | eqtr3id 2785 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = 𝑏 ∧ 𝑏 = 𝐵) → {𝑏, 𝑏} = {𝐵}) |
| 39 | 34, 38 | eqtr2d 2772 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 = 𝑏 ∧ 𝑏 = 𝐵) → {𝐵} = {𝑎, 𝑏}) |
| 40 | 39 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑏 → (𝑏 = 𝐵 → {𝐵} = {𝑎, 𝑏})) |
| 41 | 40 | spimevw 1985 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝐵 → ∃𝑎{𝐵} = {𝑎, 𝑏}) |
| 42 | 41 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((¬
𝐴 ∈ V ∧ 𝑏 = 𝐵) → ∃𝑎{𝐵} = {𝑎, 𝑏}) |
| 43 | | prprc1 4746 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
| 44 | 43 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝐴 ∈ V ∧ 𝑏 = 𝐵) → {𝐴, 𝐵} = {𝐵}) |
| 45 | 44 | eqeq1d 2738 |
. . . . . . . . . . . . 13
⊢ ((¬
𝐴 ∈ V ∧ 𝑏 = 𝐵) → ({𝐴, 𝐵} = {𝑎, 𝑏} ↔ {𝐵} = {𝑎, 𝑏})) |
| 46 | 45 | exbidv 1921 |
. . . . . . . . . . . 12
⊢ ((¬
𝐴 ∈ V ∧ 𝑏 = 𝐵) → (∃𝑎{𝐴, 𝐵} = {𝑎, 𝑏} ↔ ∃𝑎{𝐵} = {𝑎, 𝑏})) |
| 47 | 42, 46 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((¬
𝐴 ∈ V ∧ 𝑏 = 𝐵) → ∃𝑎{𝐴, 𝐵} = {𝑎, 𝑏}) |
| 48 | 47 | ex 412 |
. . . . . . . . . 10
⊢ (¬
𝐴 ∈ V → (𝑏 = 𝐵 → ∃𝑎{𝐴, 𝐵} = {𝑎, 𝑏})) |
| 49 | 48 | eximdv 1917 |
. . . . . . . . 9
⊢ (¬
𝐴 ∈ V →
(∃𝑏 𝑏 = 𝐵 → ∃𝑏∃𝑎{𝐴, 𝐵} = {𝑎, 𝑏})) |
| 50 | 49 | impcom 407 |
. . . . . . . 8
⊢
((∃𝑏 𝑏 = 𝐵 ∧ ¬ 𝐴 ∈ V) → ∃𝑏∃𝑎{𝐴, 𝐵} = {𝑎, 𝑏}) |
| 51 | | excom 2163 |
. . . . . . . 8
⊢
(∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏} ↔ ∃𝑏∃𝑎{𝐴, 𝐵} = {𝑎, 𝑏}) |
| 52 | 50, 51 | sylibr 234 |
. . . . . . 7
⊢
((∃𝑏 𝑏 = 𝐵 ∧ ¬ 𝐴 ∈ V) → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) |
| 53 | 52 | ex 412 |
. . . . . 6
⊢
(∃𝑏 𝑏 = 𝐵 → (¬ 𝐴 ∈ V → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏})) |
| 54 | 53, 5 | syl11 33 |
. . . . 5
⊢ (¬
𝐴 ∈ V → (𝐵 ∈ V → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏})) |
| 55 | 32, 54 | pm2.61i 182 |
. . . 4
⊢ (𝐵 ∈ V → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) |
| 56 | 31, 55 | jaoi 857 |
. . 3
⊢ ((𝐴 ∈ V ∨ 𝐵 ∈ V) → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) |
| 57 | 3, 56 | syl 17 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) |
| 58 | | prex 5412 |
. . 3
⊢ {𝐴, 𝐵} ∈ V |
| 59 | | eqeq1 2740 |
. . . 4
⊢ (𝑝 = {𝐴, 𝐵} → (𝑝 = {𝑎, 𝑏} ↔ {𝐴, 𝐵} = {𝑎, 𝑏})) |
| 60 | 59 | 2exbidv 1924 |
. . 3
⊢ (𝑝 = {𝐴, 𝐵} → (∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏})) |
| 61 | 58, 60 | elab 3663 |
. 2
⊢ ({𝐴, 𝐵} ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} ↔ ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) |
| 62 | 57, 61 | sylibr 234 |
1
⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |