Proof of Theorem elsprel
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elex 3501 | . . . 4
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | 
| 2 |  | elex 3501 | . . . 4
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | 
| 3 | 1, 2 | orim12i 909 | . . 3
⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 ∈ V ∨ 𝐵 ∈ V)) | 
| 4 |  | elisset 2823 | . . . . . . 7
⊢ (𝐴 ∈ V → ∃𝑎 𝑎 = 𝐴) | 
| 5 |  | elisset 2823 | . . . . . . 7
⊢ (𝐵 ∈ V → ∃𝑏 𝑏 = 𝐵) | 
| 6 |  | exdistrv 1955 | . . . . . . . 8
⊢
(∃𝑎∃𝑏(𝑎 = 𝐴 ∧ 𝑏 = 𝐵) ↔ (∃𝑎 𝑎 = 𝐴 ∧ ∃𝑏 𝑏 = 𝐵)) | 
| 7 |  | preq12 4735 | . . . . . . . . . 10
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → {𝑎, 𝑏} = {𝐴, 𝐵}) | 
| 8 | 7 | eqcomd 2743 | . . . . . . . . 9
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → {𝐴, 𝐵} = {𝑎, 𝑏}) | 
| 9 | 8 | 2eximi 1836 | . . . . . . . 8
⊢
(∃𝑎∃𝑏(𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) | 
| 10 | 6, 9 | sylbir 235 | . . . . . . 7
⊢
((∃𝑎 𝑎 = 𝐴 ∧ ∃𝑏 𝑏 = 𝐵) → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) | 
| 11 | 4, 5, 10 | syl2an 596 | . . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) | 
| 12 | 11 | expcom 413 | . . . . 5
⊢ (𝐵 ∈ V → (𝐴 ∈ V → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏})) | 
| 13 |  | preq2 4734 | . . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑎 → {𝑎, 𝑏} = {𝑎, 𝑎}) | 
| 14 | 13 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑎 ∧ 𝑎 = 𝐴) → {𝑎, 𝑏} = {𝑎, 𝑎}) | 
| 15 |  | dfsn2 4639 | . . . . . . . . . . . . . 14
⊢ {𝑎} = {𝑎, 𝑎} | 
| 16 |  | sneq 4636 | . . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | 
| 17 | 16 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((𝑏 = 𝑎 ∧ 𝑎 = 𝐴) → {𝑎} = {𝐴}) | 
| 18 | 15, 17 | eqtr3id 2791 | . . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑎 ∧ 𝑎 = 𝐴) → {𝑎, 𝑎} = {𝐴}) | 
| 19 | 14, 18 | eqtr2d 2778 | . . . . . . . . . . . 12
⊢ ((𝑏 = 𝑎 ∧ 𝑎 = 𝐴) → {𝐴} = {𝑎, 𝑏}) | 
| 20 | 19 | ex 412 | . . . . . . . . . . 11
⊢ (𝑏 = 𝑎 → (𝑎 = 𝐴 → {𝐴} = {𝑎, 𝑏})) | 
| 21 | 20 | spimevw 1994 | . . . . . . . . . 10
⊢ (𝑎 = 𝐴 → ∃𝑏{𝐴} = {𝑎, 𝑏}) | 
| 22 | 21 | adantl 481 | . . . . . . . . 9
⊢ ((¬
𝐵 ∈ V ∧ 𝑎 = 𝐴) → ∃𝑏{𝐴} = {𝑎, 𝑏}) | 
| 23 |  | prprc2 4766 | . . . . . . . . . . . 12
⊢ (¬
𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) | 
| 24 | 23 | adantr 480 | . . . . . . . . . . 11
⊢ ((¬
𝐵 ∈ V ∧ 𝑎 = 𝐴) → {𝐴, 𝐵} = {𝐴}) | 
| 25 | 24 | eqeq1d 2739 | . . . . . . . . . 10
⊢ ((¬
𝐵 ∈ V ∧ 𝑎 = 𝐴) → ({𝐴, 𝐵} = {𝑎, 𝑏} ↔ {𝐴} = {𝑎, 𝑏})) | 
| 26 | 25 | exbidv 1921 | . . . . . . . . 9
⊢ ((¬
𝐵 ∈ V ∧ 𝑎 = 𝐴) → (∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏} ↔ ∃𝑏{𝐴} = {𝑎, 𝑏})) | 
| 27 | 22, 26 | mpbird 257 | . . . . . . . 8
⊢ ((¬
𝐵 ∈ V ∧ 𝑎 = 𝐴) → ∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) | 
| 28 | 27 | ex 412 | . . . . . . 7
⊢ (¬
𝐵 ∈ V → (𝑎 = 𝐴 → ∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏})) | 
| 29 | 28 | eximdv 1917 | . . . . . 6
⊢ (¬
𝐵 ∈ V →
(∃𝑎 𝑎 = 𝐴 → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏})) | 
| 30 | 4, 29 | syl5 34 | . . . . 5
⊢ (¬
𝐵 ∈ V → (𝐴 ∈ V → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏})) | 
| 31 | 12, 30 | pm2.61i 182 | . . . 4
⊢ (𝐴 ∈ V → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) | 
| 32 | 11 | ex 412 | . . . . 5
⊢ (𝐴 ∈ V → (𝐵 ∈ V → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏})) | 
| 33 |  | preq1 4733 | . . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑏 → {𝑎, 𝑏} = {𝑏, 𝑏}) | 
| 34 | 33 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝑎 = 𝑏 ∧ 𝑏 = 𝐵) → {𝑎, 𝑏} = {𝑏, 𝑏}) | 
| 35 |  | dfsn2 4639 | . . . . . . . . . . . . . . . . 17
⊢ {𝑏} = {𝑏, 𝑏} | 
| 36 |  | sneq 4636 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) | 
| 37 | 36 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑎 = 𝑏 ∧ 𝑏 = 𝐵) → {𝑏} = {𝐵}) | 
| 38 | 35, 37 | eqtr3id 2791 | . . . . . . . . . . . . . . . 16
⊢ ((𝑎 = 𝑏 ∧ 𝑏 = 𝐵) → {𝑏, 𝑏} = {𝐵}) | 
| 39 | 34, 38 | eqtr2d 2778 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 = 𝑏 ∧ 𝑏 = 𝐵) → {𝐵} = {𝑎, 𝑏}) | 
| 40 | 39 | ex 412 | . . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑏 → (𝑏 = 𝐵 → {𝐵} = {𝑎, 𝑏})) | 
| 41 | 40 | spimevw 1994 | . . . . . . . . . . . . 13
⊢ (𝑏 = 𝐵 → ∃𝑎{𝐵} = {𝑎, 𝑏}) | 
| 42 | 41 | adantl 481 | . . . . . . . . . . . 12
⊢ ((¬
𝐴 ∈ V ∧ 𝑏 = 𝐵) → ∃𝑎{𝐵} = {𝑎, 𝑏}) | 
| 43 |  | prprc1 4765 | . . . . . . . . . . . . . . 15
⊢ (¬
𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) | 
| 44 | 43 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((¬
𝐴 ∈ V ∧ 𝑏 = 𝐵) → {𝐴, 𝐵} = {𝐵}) | 
| 45 | 44 | eqeq1d 2739 | . . . . . . . . . . . . 13
⊢ ((¬
𝐴 ∈ V ∧ 𝑏 = 𝐵) → ({𝐴, 𝐵} = {𝑎, 𝑏} ↔ {𝐵} = {𝑎, 𝑏})) | 
| 46 | 45 | exbidv 1921 | . . . . . . . . . . . 12
⊢ ((¬
𝐴 ∈ V ∧ 𝑏 = 𝐵) → (∃𝑎{𝐴, 𝐵} = {𝑎, 𝑏} ↔ ∃𝑎{𝐵} = {𝑎, 𝑏})) | 
| 47 | 42, 46 | mpbird 257 | . . . . . . . . . . 11
⊢ ((¬
𝐴 ∈ V ∧ 𝑏 = 𝐵) → ∃𝑎{𝐴, 𝐵} = {𝑎, 𝑏}) | 
| 48 | 47 | ex 412 | . . . . . . . . . 10
⊢ (¬
𝐴 ∈ V → (𝑏 = 𝐵 → ∃𝑎{𝐴, 𝐵} = {𝑎, 𝑏})) | 
| 49 | 48 | eximdv 1917 | . . . . . . . . 9
⊢ (¬
𝐴 ∈ V →
(∃𝑏 𝑏 = 𝐵 → ∃𝑏∃𝑎{𝐴, 𝐵} = {𝑎, 𝑏})) | 
| 50 | 49 | impcom 407 | . . . . . . . 8
⊢
((∃𝑏 𝑏 = 𝐵 ∧ ¬ 𝐴 ∈ V) → ∃𝑏∃𝑎{𝐴, 𝐵} = {𝑎, 𝑏}) | 
| 51 |  | excom 2162 | . . . . . . . 8
⊢
(∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏} ↔ ∃𝑏∃𝑎{𝐴, 𝐵} = {𝑎, 𝑏}) | 
| 52 | 50, 51 | sylibr 234 | . . . . . . 7
⊢
((∃𝑏 𝑏 = 𝐵 ∧ ¬ 𝐴 ∈ V) → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) | 
| 53 | 52 | ex 412 | . . . . . 6
⊢
(∃𝑏 𝑏 = 𝐵 → (¬ 𝐴 ∈ V → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏})) | 
| 54 | 53, 5 | syl11 33 | . . . . 5
⊢ (¬
𝐴 ∈ V → (𝐵 ∈ V → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏})) | 
| 55 | 32, 54 | pm2.61i 182 | . . . 4
⊢ (𝐵 ∈ V → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) | 
| 56 | 31, 55 | jaoi 858 | . . 3
⊢ ((𝐴 ∈ V ∨ 𝐵 ∈ V) → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) | 
| 57 | 3, 56 | syl 17 | . 2
⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) | 
| 58 |  | prex 5437 | . . 3
⊢ {𝐴, 𝐵} ∈ V | 
| 59 |  | eqeq1 2741 | . . . 4
⊢ (𝑝 = {𝐴, 𝐵} → (𝑝 = {𝑎, 𝑏} ↔ {𝐴, 𝐵} = {𝑎, 𝑏})) | 
| 60 | 59 | 2exbidv 1924 | . . 3
⊢ (𝑝 = {𝐴, 𝐵} → (∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏})) | 
| 61 | 58, 60 | elab 3679 | . 2
⊢ ({𝐴, 𝐵} ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} ↔ ∃𝑎∃𝑏{𝐴, 𝐵} = {𝑎, 𝑏}) | 
| 62 | 57, 61 | sylibr 234 | 1
⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |