MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sstr2OLD Structured version   Visualization version   GIF version

Theorem sstr2OLD 3987
Description: Obsolete version of sstr2 3986 as of 19-May-2025. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sstr2OLD (𝐴𝐵 → (𝐵𝐶𝐴𝐶))

Proof of Theorem sstr2OLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3973 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21imim1d 82 . . 3 (𝐴𝐵 → ((𝑥𝐵𝑥𝐶) → (𝑥𝐴𝑥𝐶)))
32alimdv 1912 . 2 (𝐴𝐵 → (∀𝑥(𝑥𝐵𝑥𝐶) → ∀𝑥(𝑥𝐴𝑥𝐶)))
4 df-ss 3964 . 2 (𝐵𝐶 ↔ ∀𝑥(𝑥𝐵𝑥𝐶))
5 df-ss 3964 . 2 (𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶))
63, 4, 53imtr4g 295 1 (𝐴𝐵 → (𝐵𝐶𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1532  wcel 2099  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1775  df-clel 2803  df-ss 3964
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator