Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sstr | Structured version Visualization version GIF version |
Description: Transitivity of subclass relationship. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
Ref | Expression |
---|---|
sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3899 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
2 | 1 | imp 410 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ⊆ wss 3858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3865 df-ss 3875 |
This theorem is referenced by: sstrd 3902 sylan9ss 3905 ssdifss 4041 uneqin 4183 intss2 4995 ssrnres 6007 relrelss 6102 fco 6516 fssres 6529 ssimaex 6737 dff3 6857 tpostpos2 7923 smores 7999 om00 8211 omeulem2 8219 pmss12g 8451 unblem1 8803 unblem2 8804 unblem3 8805 unblem4 8806 isfinite2 8809 cantnfval2 9165 cantnfle 9167 rankxplim3 9343 alephinit 9555 dfac12lem2 9604 ackbij1lem11 9690 cfeq0 9716 cfsuc 9717 cff1 9718 cflim2 9723 cfss 9725 cfslb2n 9728 cofsmo 9729 cfsmolem 9730 fin23lem34 9806 fin1a2lem13 9872 axdc3lem2 9911 axdclem 9979 pwcfsdom 10043 wunfi 10181 tskxpss 10232 tskcard 10241 suprzcl 12101 uzwo 12351 uzwo2 12352 infssuzle 12371 infssuzcl 12372 supxrbnd 12762 supxrgtmnf 12763 supxrre1 12764 supxrre2 12765 supxrss 12766 infxrss 12773 iccsupr 12874 hashf1lem2 13866 trclun 14421 fsum2d 15174 fsumabs 15204 fsumrlim 15214 fsumo1 15215 fprod2d 15383 rpnnen2lem4 15618 rpnnen2lem7 15621 ramub2 16405 ressinbas 16618 ressress 16620 submre 16934 mrcss 16945 mreacs 16987 drsdirfi 17614 clatglbss 17803 ipopos 17836 cntz2ss 18530 pgrpsubgsymg 18604 ablfac1eulem 19262 subrgint 19625 tgval 21655 mretopd 21792 ssnei 21810 opnneiss 21818 restdis 21878 restcls 21881 restntr 21882 tgcnp 21953 fbssfi 22537 fgss2 22574 fgcl 22578 supfil 22595 alexsubALTlem3 22749 alexsubALTlem4 22750 cnextcn 22767 ustex3sym 22918 trust 22930 restutop 22938 utop2nei 22951 cfiluweak 22996 blssexps 23128 blssex 23129 mopni3 23196 metss 23210 metcnp3 23242 metust 23260 cfilucfil 23261 psmetutop 23269 tgioo 23497 xrsmopn 23513 fsumcn 23571 cncfmptid 23614 iscmet3lem2 23992 caussi 23997 ovolsslem 24184 ovolsscl 24186 ovolssnul 24187 opnmblALT 24303 itgfsum 24526 limcresi 24584 dvmptfsum 24674 plyss 24895 nbuhgr 27232 chsupunss 29226 shsupunss 29228 spanss 29230 shslubi 29267 shlub 29296 mdsl1i 30203 mdsl2i 30204 cvmdi 30206 mdslmd1lem1 30207 mdslmd1lem2 30208 mdslmd2i 30212 mdslmd4i 30215 atomli 30264 atcvatlem 30267 chirredlem2 30273 chirredi 30276 mdsymlem5 30289 xrge0infss 30607 tpr2rico 31383 sigainb 31623 dya2icoseg2 31764 omssubadd 31786 eulerpartlemn 31867 ballotlem2 31974 nummin 32592 cvmlift2lem12 32792 opnbnd 34063 fneint 34086 dissneqlem 35037 inunissunidif 35072 pibt2 35114 fin2so 35324 matunitlindflem1 35333 mblfinlem4 35377 ismblfin 35378 filbcmb 35458 heiborlem10 35538 igenmin 35782 lssatle 36591 paddss1 37393 paddss2 37394 paddss12 37395 paddssw2 37420 pclssN 37470 pclfinN 37476 polsubN 37483 2polvalN 37490 2polssN 37491 3polN 37492 2pmaplubN 37502 pnonsingN 37509 polsubclN 37528 dihord6apre 38832 dochsscl 38944 mapdordlem2 39213 isnacs3 40024 itgoss 40480 sspwimp 41997 sspwimpVD 41998 nsstr 42104 islptre 42627 gsumlsscl 45152 lincellss 45200 ellcoellss 45209 |
Copyright terms: Public domain | W3C validator |