| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sstr | Structured version Visualization version GIF version | ||
| Description: Transitivity of subclass relationship. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
| Ref | Expression |
|---|---|
| sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3965 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 2 | 1 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3943 |
| This theorem is referenced by: sstrd 3969 sylan9ss 3972 ssdifss 4115 uneqin 4264 intss2 5084 ssrnres 6167 relrelss 6262 fcof 6728 fssres 6743 ssimaex 6963 dff3 7089 tpostpos2 8244 smores 8364 om00 8585 omeulem2 8593 cofonr 8684 naddunif 8703 pmss12g 8881 unblem1 9298 unblem2 9299 unblem3 9300 unblem4 9301 isfinite2 9304 cantnfval2 9681 cantnfle 9683 rankxplim3 9893 alephinit 10107 dfac12lem2 10157 ackbij1lem11 10241 cfeq0 10268 cfsuc 10269 cff1 10270 cflim2 10275 cfss 10277 cfslb2n 10280 cofsmo 10281 cfsmolem 10282 fin23lem34 10358 fin1a2lem13 10424 axdc3lem2 10463 axdclem 10531 pwcfsdom 10595 wunfi 10733 tskxpss 10784 tskcard 10793 suprzcl 12671 uzwo 12925 uzwo2 12926 infssuzle 12945 infssuzcl 12946 supxrbnd 13342 supxrgtmnf 13343 supxrre1 13344 supxrre2 13345 supxrss 13346 infxrss 13354 iccsupr 13457 hashf1lem2 14472 trclun 15031 fsum2d 15785 fsumabs 15815 fsumrlim 15825 fsumo1 15826 fprod2d 15995 rpnnen2lem4 16233 rpnnen2lem7 16236 ramub2 17032 ressinbas 17264 ressress 17266 submre 17615 mrcss 17626 mreacs 17668 drsdirfi 18315 clatglbss 18527 ipopos 18544 cntz2ss 19316 pgrpsubgsymg 19388 ablfac1eulem 20053 subrngint 20518 subrgint 20553 tgval 22891 mretopd 23028 ssnei 23046 opnneiss 23054 restdis 23114 restcls 23117 restntr 23118 tgcnp 23189 fbssfi 23773 fgss2 23810 fgcl 23814 supfil 23831 alexsubALTlem3 23985 alexsubALTlem4 23986 cnextcn 24003 ustex3sym 24154 trust 24166 restutop 24174 utop2nei 24187 cfiluweak 24231 blssexps 24363 blssex 24364 mopni3 24431 metss 24445 metcnp3 24477 metust 24495 cfilucfil 24496 psmetutop 24504 tgioo 24733 xrsmopn 24750 fsumcn 24810 cncfmptid 24855 iscmet3lem2 25242 caussi 25247 ovolsslem 25435 ovolsscl 25437 ovolssnul 25438 opnmblALT 25554 itgfsum 25778 limcresi 25836 dvmptfsum 25929 plyss 26154 madebdayim 27843 cofcutrtime 27878 nbuhgr 29268 chsupunss 31271 shsupunss 31273 spanss 31275 shslubi 31312 shlub 31341 mdsl1i 32248 mdsl2i 32249 cvmdi 32251 mdslmd1lem1 32252 mdslmd1lem2 32253 mdslmd2i 32257 mdslmd4i 32260 atomli 32309 atcvatlem 32312 chirredlem2 32318 chirredi 32321 mdsymlem5 32334 xrge0infss 32683 tpr2rico 33889 sigainb 34113 dya2icoseg2 34256 omssubadd 34278 eulerpartlemn 34359 ballotlem2 34467 nummin 35068 cvmlift2lem12 35282 opnbnd 36289 fneint 36312 dissneqlem 37304 inunissunidif 37339 pibt2 37381 fin2so 37577 matunitlindflem1 37586 mblfinlem4 37630 ismblfin 37631 filbcmb 37710 heiborlem10 37790 igenmin 38034 lssatle 38979 paddss1 39782 paddss2 39783 paddss12 39784 paddssw2 39809 pclssN 39859 pclfinN 39865 polsubN 39872 2polvalN 39879 2polssN 39880 3polN 39881 2pmaplubN 39891 pnonsingN 39898 polsubclN 39917 dihord6apre 41221 dochsscl 41333 mapdordlem2 41602 isnacs3 42680 itgoss 43134 ofoaid1 43329 ofoaid2 43330 sspwimp 44890 sspwimpVD 44891 nsstr 45067 islptre 45596 gsumlsscl 48303 lincellss 48350 ellcoellss 48359 |
| Copyright terms: Public domain | W3C validator |