| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sstr | Structured version Visualization version GIF version | ||
| Description: Transitivity of subclass relationship. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
| Ref | Expression |
|---|---|
| sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3953 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 2 | 1 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3931 |
| This theorem is referenced by: sstrd 3957 sylan9ss 3960 ssdifss 4103 uneqin 4252 intss2 5072 ssrnres 6151 relrelss 6246 fcof 6711 fssres 6726 ssimaex 6946 dff3 7072 tpostpos2 8226 smores 8321 om00 8539 omeulem2 8547 cofonr 8638 naddunif 8657 pmss12g 8842 unblem1 9239 unblem2 9240 unblem3 9241 unblem4 9242 isfinite2 9245 cantnfval2 9622 cantnfle 9624 rankxplim3 9834 alephinit 10048 dfac12lem2 10098 ackbij1lem11 10182 cfeq0 10209 cfsuc 10210 cff1 10211 cflim2 10216 cfss 10218 cfslb2n 10221 cofsmo 10222 cfsmolem 10223 fin23lem34 10299 fin1a2lem13 10365 axdc3lem2 10404 axdclem 10472 pwcfsdom 10536 wunfi 10674 tskxpss 10725 tskcard 10734 suprzcl 12614 uzwo 12870 uzwo2 12871 infssuzle 12890 infssuzcl 12891 supxrbnd 13288 supxrgtmnf 13289 supxrre1 13290 supxrre2 13291 supxrss 13292 infxrss 13300 iccsupr 13403 hashf1lem2 14421 trclun 14980 fsum2d 15737 fsumabs 15767 fsumrlim 15777 fsumo1 15778 fprod2d 15947 rpnnen2lem4 16185 rpnnen2lem7 16188 ramub2 16985 ressinbas 17215 ressress 17217 submre 17566 mrcss 17577 mreacs 17619 drsdirfi 18266 clatglbss 18478 ipopos 18495 cntz2ss 19267 pgrpsubgsymg 19339 ablfac1eulem 20004 subrngint 20469 subrgint 20504 tgval 22842 mretopd 22979 ssnei 22997 opnneiss 23005 restdis 23065 restcls 23068 restntr 23069 tgcnp 23140 fbssfi 23724 fgss2 23761 fgcl 23765 supfil 23782 alexsubALTlem3 23936 alexsubALTlem4 23937 cnextcn 23954 ustex3sym 24105 trust 24117 restutop 24125 utop2nei 24138 cfiluweak 24182 blssexps 24314 blssex 24315 mopni3 24382 metss 24396 metcnp3 24428 metust 24446 cfilucfil 24447 psmetutop 24455 tgioo 24684 xrsmopn 24701 fsumcn 24761 cncfmptid 24806 iscmet3lem2 25192 caussi 25197 ovolsslem 25385 ovolsscl 25387 ovolssnul 25388 opnmblALT 25504 itgfsum 25728 limcresi 25786 dvmptfsum 25879 plyss 26104 madebdayim 27799 cofcutrtime 27835 n0sfincut 28246 nbuhgr 29270 chsupunss 31273 shsupunss 31275 spanss 31277 shslubi 31314 shlub 31343 mdsl1i 32250 mdsl2i 32251 cvmdi 32253 mdslmd1lem1 32254 mdslmd1lem2 32255 mdslmd2i 32259 mdslmd4i 32262 atomli 32311 atcvatlem 32314 chirredlem2 32320 chirredi 32323 mdsymlem5 32336 xrge0infss 32683 tpr2rico 33902 sigainb 34126 dya2icoseg2 34269 omssubadd 34291 eulerpartlemn 34372 ballotlem2 34480 nummin 35081 cvmlift2lem12 35301 opnbnd 36313 fneint 36336 dissneqlem 37328 inunissunidif 37363 pibt2 37405 fin2so 37601 matunitlindflem1 37610 mblfinlem4 37654 ismblfin 37655 filbcmb 37734 heiborlem10 37814 igenmin 38058 lssatle 39008 paddss1 39811 paddss2 39812 paddss12 39813 paddssw2 39838 pclssN 39888 pclfinN 39894 polsubN 39901 2polvalN 39908 2polssN 39909 3polN 39910 2pmaplubN 39920 pnonsingN 39927 polsubclN 39946 dihord6apre 41250 dochsscl 41362 mapdordlem2 41631 isnacs3 42698 itgoss 43152 ofoaid1 43347 ofoaid2 43348 sspwimp 44907 sspwimpVD 44908 nsstr 45089 islptre 45617 gsumlsscl 48368 lincellss 48415 ellcoellss 48424 |
| Copyright terms: Public domain | W3C validator |