| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sstr | Structured version Visualization version GIF version | ||
| Description: Transitivity of subclass relationship. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
| Ref | Expression |
|---|---|
| sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3956 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 2 | 1 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3934 |
| This theorem is referenced by: sstrd 3960 sylan9ss 3963 ssdifss 4106 uneqin 4255 intss2 5075 ssrnres 6154 relrelss 6249 fcof 6714 fssres 6729 ssimaex 6949 dff3 7075 tpostpos2 8229 smores 8324 om00 8542 omeulem2 8550 cofonr 8641 naddunif 8660 pmss12g 8845 unblem1 9246 unblem2 9247 unblem3 9248 unblem4 9249 isfinite2 9252 cantnfval2 9629 cantnfle 9631 rankxplim3 9841 alephinit 10055 dfac12lem2 10105 ackbij1lem11 10189 cfeq0 10216 cfsuc 10217 cff1 10218 cflim2 10223 cfss 10225 cfslb2n 10228 cofsmo 10229 cfsmolem 10230 fin23lem34 10306 fin1a2lem13 10372 axdc3lem2 10411 axdclem 10479 pwcfsdom 10543 wunfi 10681 tskxpss 10732 tskcard 10741 suprzcl 12621 uzwo 12877 uzwo2 12878 infssuzle 12897 infssuzcl 12898 supxrbnd 13295 supxrgtmnf 13296 supxrre1 13297 supxrre2 13298 supxrss 13299 infxrss 13307 iccsupr 13410 hashf1lem2 14428 trclun 14987 fsum2d 15744 fsumabs 15774 fsumrlim 15784 fsumo1 15785 fprod2d 15954 rpnnen2lem4 16192 rpnnen2lem7 16195 ramub2 16992 ressinbas 17222 ressress 17224 submre 17573 mrcss 17584 mreacs 17626 drsdirfi 18273 clatglbss 18485 ipopos 18502 cntz2ss 19274 pgrpsubgsymg 19346 ablfac1eulem 20011 subrngint 20476 subrgint 20511 tgval 22849 mretopd 22986 ssnei 23004 opnneiss 23012 restdis 23072 restcls 23075 restntr 23076 tgcnp 23147 fbssfi 23731 fgss2 23768 fgcl 23772 supfil 23789 alexsubALTlem3 23943 alexsubALTlem4 23944 cnextcn 23961 ustex3sym 24112 trust 24124 restutop 24132 utop2nei 24145 cfiluweak 24189 blssexps 24321 blssex 24322 mopni3 24389 metss 24403 metcnp3 24435 metust 24453 cfilucfil 24454 psmetutop 24462 tgioo 24691 xrsmopn 24708 fsumcn 24768 cncfmptid 24813 iscmet3lem2 25199 caussi 25204 ovolsslem 25392 ovolsscl 25394 ovolssnul 25395 opnmblALT 25511 itgfsum 25735 limcresi 25793 dvmptfsum 25886 plyss 26111 madebdayim 27806 cofcutrtime 27842 n0sfincut 28253 nbuhgr 29277 chsupunss 31280 shsupunss 31282 spanss 31284 shslubi 31321 shlub 31350 mdsl1i 32257 mdsl2i 32258 cvmdi 32260 mdslmd1lem1 32261 mdslmd1lem2 32262 mdslmd2i 32266 mdslmd4i 32269 atomli 32318 atcvatlem 32321 chirredlem2 32327 chirredi 32330 mdsymlem5 32343 xrge0infss 32690 tpr2rico 33909 sigainb 34133 dya2icoseg2 34276 omssubadd 34298 eulerpartlemn 34379 ballotlem2 34487 nummin 35088 cvmlift2lem12 35308 opnbnd 36320 fneint 36343 dissneqlem 37335 inunissunidif 37370 pibt2 37412 fin2so 37608 matunitlindflem1 37617 mblfinlem4 37661 ismblfin 37662 filbcmb 37741 heiborlem10 37821 igenmin 38065 lssatle 39015 paddss1 39818 paddss2 39819 paddss12 39820 paddssw2 39845 pclssN 39895 pclfinN 39901 polsubN 39908 2polvalN 39915 2polssN 39916 3polN 39917 2pmaplubN 39927 pnonsingN 39934 polsubclN 39953 dihord6apre 41257 dochsscl 41369 mapdordlem2 41638 isnacs3 42705 itgoss 43159 ofoaid1 43354 ofoaid2 43355 sspwimp 44914 sspwimpVD 44915 nsstr 45096 islptre 45624 gsumlsscl 48372 lincellss 48419 ellcoellss 48428 |
| Copyright terms: Public domain | W3C validator |