Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sstr | Structured version Visualization version GIF version |
Description: Transitivity of subclass relationship. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
Ref | Expression |
---|---|
sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3924 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
2 | 1 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: sstrd 3927 sylan9ss 3930 ssdifss 4066 uneqin 4209 intss2 5033 ssrnres 6070 relrelss 6165 fcof 6607 fcoOLD 6609 fssres 6624 ssimaex 6835 dff3 6958 tpostpos2 8034 smores 8154 om00 8368 omeulem2 8376 pmss12g 8615 unblem1 8996 unblem2 8997 unblem3 8998 unblem4 8999 isfinite2 9002 cantnfval2 9357 cantnfle 9359 rankxplim3 9570 alephinit 9782 dfac12lem2 9831 ackbij1lem11 9917 cfeq0 9943 cfsuc 9944 cff1 9945 cflim2 9950 cfss 9952 cfslb2n 9955 cofsmo 9956 cfsmolem 9957 fin23lem34 10033 fin1a2lem13 10099 axdc3lem2 10138 axdclem 10206 pwcfsdom 10270 wunfi 10408 tskxpss 10459 tskcard 10468 suprzcl 12330 uzwo 12580 uzwo2 12581 infssuzle 12600 infssuzcl 12601 supxrbnd 12991 supxrgtmnf 12992 supxrre1 12993 supxrre2 12994 supxrss 12995 infxrss 13002 iccsupr 13103 hashf1lem2 14098 trclun 14653 fsum2d 15411 fsumabs 15441 fsumrlim 15451 fsumo1 15452 fprod2d 15619 rpnnen2lem4 15854 rpnnen2lem7 15857 ramub2 16643 ressinbas 16881 ressress 16884 submre 17231 mrcss 17242 mreacs 17284 drsdirfi 17938 clatglbss 18152 ipopos 18169 cntz2ss 18854 pgrpsubgsymg 18932 ablfac1eulem 19590 subrgint 19961 tgval 22013 mretopd 22151 ssnei 22169 opnneiss 22177 restdis 22237 restcls 22240 restntr 22241 tgcnp 22312 fbssfi 22896 fgss2 22933 fgcl 22937 supfil 22954 alexsubALTlem3 23108 alexsubALTlem4 23109 cnextcn 23126 ustex3sym 23277 trust 23289 restutop 23297 utop2nei 23310 cfiluweak 23355 blssexps 23487 blssex 23488 mopni3 23556 metss 23570 metcnp3 23602 metust 23620 cfilucfil 23621 psmetutop 23629 tgioo 23865 xrsmopn 23881 fsumcn 23939 cncfmptid 23982 iscmet3lem2 24361 caussi 24366 ovolsslem 24553 ovolsscl 24555 ovolssnul 24556 opnmblALT 24672 itgfsum 24896 limcresi 24954 dvmptfsum 25044 plyss 25265 nbuhgr 27613 chsupunss 29607 shsupunss 29609 spanss 29611 shslubi 29648 shlub 29677 mdsl1i 30584 mdsl2i 30585 cvmdi 30587 mdslmd1lem1 30588 mdslmd1lem2 30589 mdslmd2i 30593 mdslmd4i 30596 atomli 30645 atcvatlem 30648 chirredlem2 30654 chirredi 30657 mdsymlem5 30670 xrge0infss 30985 tpr2rico 31764 sigainb 32004 dya2icoseg2 32145 omssubadd 32167 eulerpartlemn 32248 ballotlem2 32355 nummin 32963 cvmlift2lem12 33176 madebdayim 33997 cofcutrtime 34020 opnbnd 34441 fneint 34464 dissneqlem 35438 inunissunidif 35473 pibt2 35515 fin2so 35691 matunitlindflem1 35700 mblfinlem4 35744 ismblfin 35745 filbcmb 35825 heiborlem10 35905 igenmin 36149 lssatle 36956 paddss1 37758 paddss2 37759 paddss12 37760 paddssw2 37785 pclssN 37835 pclfinN 37841 polsubN 37848 2polvalN 37855 2polssN 37856 3polN 37857 2pmaplubN 37867 pnonsingN 37874 polsubclN 37893 dihord6apre 39197 dochsscl 39309 mapdordlem2 39578 isnacs3 40448 itgoss 40904 sspwimp 42427 sspwimpVD 42428 nsstr 42534 islptre 43050 gsumlsscl 45607 lincellss 45655 ellcoellss 45664 |
Copyright terms: Public domain | W3C validator |