| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sstr | Structured version Visualization version GIF version | ||
| Description: Transitivity of subclass relationship. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
| Ref | Expression |
|---|---|
| sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3939 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 2 | 1 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3917 |
| This theorem is referenced by: sstrd 3943 sylan9ss 3946 ssdifss 4088 uneqin 4237 intss2 5054 ssrnres 6122 relrelss 6216 fcof 6670 fssres 6685 ssimaex 6902 dff3 7028 tpostpos2 8172 smores 8267 om00 8485 omeulem2 8493 cofonr 8584 naddunif 8603 pmss12g 8788 unblem1 9171 unblem2 9172 unblem3 9173 unblem4 9174 isfinite2 9177 cantnfval2 9554 cantnfle 9556 rankxplim3 9766 alephinit 9978 dfac12lem2 10028 ackbij1lem11 10112 cfeq0 10139 cfsuc 10140 cff1 10141 cflim2 10146 cfss 10148 cfslb2n 10151 cofsmo 10152 cfsmolem 10153 fin23lem34 10229 fin1a2lem13 10295 axdc3lem2 10334 axdclem 10402 pwcfsdom 10466 wunfi 10604 tskxpss 10655 tskcard 10664 suprzcl 12545 uzwo 12801 uzwo2 12802 infssuzle 12821 infssuzcl 12822 supxrbnd 13219 supxrgtmnf 13220 supxrre1 13221 supxrre2 13222 supxrss 13223 infxrss 13231 iccsupr 13334 hashf1lem2 14355 trclun 14913 fsum2d 15670 fsumabs 15700 fsumrlim 15710 fsumo1 15711 fprod2d 15880 rpnnen2lem4 16118 rpnnen2lem7 16121 ramub2 16918 ressinbas 17148 ressress 17150 submre 17499 mrcss 17514 mreacs 17556 drsdirfi 18203 clatglbss 18417 ipopos 18434 chnrdss 18515 cntz2ss 19240 pgrpsubgsymg 19314 ablfac1eulem 19979 subrngint 20468 subrgint 20503 tgval 22863 mretopd 23000 ssnei 23018 opnneiss 23026 restdis 23086 restcls 23089 restntr 23090 tgcnp 23161 fbssfi 23745 fgss2 23782 fgcl 23786 supfil 23803 alexsubALTlem3 23957 alexsubALTlem4 23958 cnextcn 23975 ustex3sym 24126 trust 24137 restutop 24145 utop2nei 24158 cfiluweak 24202 blssexps 24334 blssex 24335 mopni3 24402 metss 24416 metcnp3 24448 metust 24466 cfilucfil 24467 psmetutop 24475 tgioo 24704 xrsmopn 24721 fsumcn 24781 cncfmptid 24826 iscmet3lem2 25212 caussi 25217 ovolsslem 25405 ovolsscl 25407 ovolssnul 25408 opnmblALT 25524 itgfsum 25748 limcresi 25806 dvmptfsum 25899 plyss 26124 madebdayim 27826 cofcutrtime 27864 n0sfincut 28275 nbuhgr 29314 chsupunss 31314 shsupunss 31316 spanss 31318 shslubi 31355 shlub 31384 mdsl1i 32291 mdsl2i 32292 cvmdi 32294 mdslmd1lem1 32295 mdslmd1lem2 32296 mdslmd2i 32300 mdslmd4i 32303 atomli 32352 atcvatlem 32355 chirredlem2 32361 chirredi 32364 mdsymlem5 32377 xrge0infss 32733 tpr2rico 33915 sigainb 34139 dya2icoseg2 34281 omssubadd 34303 eulerpartlemn 34384 ballotlem2 34492 nummin 35093 cvmlift2lem12 35326 opnbnd 36338 fneint 36361 dissneqlem 37353 inunissunidif 37388 pibt2 37430 fin2so 37626 matunitlindflem1 37635 mblfinlem4 37679 ismblfin 37680 filbcmb 37759 heiborlem10 37839 igenmin 38083 lssatle 39033 paddss1 39835 paddss2 39836 paddss12 39837 paddssw2 39862 pclssN 39912 pclfinN 39918 polsubN 39925 2polvalN 39932 2polssN 39933 3polN 39934 2pmaplubN 39944 pnonsingN 39951 polsubclN 39970 dihord6apre 41274 dochsscl 41386 mapdordlem2 41655 isnacs3 42722 itgoss 43175 ofoaid1 43370 ofoaid2 43371 sspwimp 44929 sspwimpVD 44930 nsstr 45111 islptre 45638 gsumlsscl 48390 lincellss 48437 ellcoellss 48446 |
| Copyright terms: Public domain | W3C validator |