| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sstr | Structured version Visualization version GIF version | ||
| Description: Transitivity of subclass relationship. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
| Ref | Expression |
|---|---|
| sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3944 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 2 | 1 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3922 |
| This theorem is referenced by: sstrd 3948 sylan9ss 3951 ssdifss 4093 uneqin 4242 intss2 5060 ssrnres 6131 relrelss 6225 fcof 6679 fssres 6694 ssimaex 6912 dff3 7038 tpostpos2 8187 smores 8282 om00 8500 omeulem2 8508 cofonr 8599 naddunif 8618 pmss12g 8803 unblem1 9197 unblem2 9198 unblem3 9199 unblem4 9200 isfinite2 9203 cantnfval2 9584 cantnfle 9586 rankxplim3 9796 alephinit 10008 dfac12lem2 10058 ackbij1lem11 10142 cfeq0 10169 cfsuc 10170 cff1 10171 cflim2 10176 cfss 10178 cfslb2n 10181 cofsmo 10182 cfsmolem 10183 fin23lem34 10259 fin1a2lem13 10325 axdc3lem2 10364 axdclem 10432 pwcfsdom 10496 wunfi 10634 tskxpss 10685 tskcard 10694 suprzcl 12574 uzwo 12830 uzwo2 12831 infssuzle 12850 infssuzcl 12851 supxrbnd 13248 supxrgtmnf 13249 supxrre1 13250 supxrre2 13251 supxrss 13252 infxrss 13260 iccsupr 13363 hashf1lem2 14381 trclun 14939 fsum2d 15696 fsumabs 15726 fsumrlim 15736 fsumo1 15737 fprod2d 15906 rpnnen2lem4 16144 rpnnen2lem7 16147 ramub2 16944 ressinbas 17174 ressress 17176 submre 17525 mrcss 17540 mreacs 17582 drsdirfi 18229 clatglbss 18443 ipopos 18460 cntz2ss 19232 pgrpsubgsymg 19306 ablfac1eulem 19971 subrngint 20463 subrgint 20498 tgval 22858 mretopd 22995 ssnei 23013 opnneiss 23021 restdis 23081 restcls 23084 restntr 23085 tgcnp 23156 fbssfi 23740 fgss2 23777 fgcl 23781 supfil 23798 alexsubALTlem3 23952 alexsubALTlem4 23953 cnextcn 23970 ustex3sym 24121 trust 24133 restutop 24141 utop2nei 24154 cfiluweak 24198 blssexps 24330 blssex 24331 mopni3 24398 metss 24412 metcnp3 24444 metust 24462 cfilucfil 24463 psmetutop 24471 tgioo 24700 xrsmopn 24717 fsumcn 24777 cncfmptid 24822 iscmet3lem2 25208 caussi 25213 ovolsslem 25401 ovolsscl 25403 ovolssnul 25404 opnmblALT 25520 itgfsum 25744 limcresi 25802 dvmptfsum 25895 plyss 26120 madebdayim 27820 cofcutrtime 27858 n0sfincut 28269 nbuhgr 29306 chsupunss 31306 shsupunss 31308 spanss 31310 shslubi 31347 shlub 31376 mdsl1i 32283 mdsl2i 32284 cvmdi 32286 mdslmd1lem1 32287 mdslmd1lem2 32288 mdslmd2i 32292 mdslmd4i 32295 atomli 32344 atcvatlem 32347 chirredlem2 32353 chirredi 32356 mdsymlem5 32369 xrge0infss 32716 tpr2rico 33878 sigainb 34102 dya2icoseg2 34245 omssubadd 34267 eulerpartlemn 34348 ballotlem2 34456 nummin 35057 cvmlift2lem12 35286 opnbnd 36298 fneint 36321 dissneqlem 37313 inunissunidif 37348 pibt2 37390 fin2so 37586 matunitlindflem1 37595 mblfinlem4 37639 ismblfin 37640 filbcmb 37719 heiborlem10 37799 igenmin 38043 lssatle 38993 paddss1 39796 paddss2 39797 paddss12 39798 paddssw2 39823 pclssN 39873 pclfinN 39879 polsubN 39886 2polvalN 39893 2polssN 39894 3polN 39895 2pmaplubN 39905 pnonsingN 39912 polsubclN 39931 dihord6apre 41235 dochsscl 41347 mapdordlem2 41616 isnacs3 42683 itgoss 43136 ofoaid1 43331 ofoaid2 43332 sspwimp 44891 sspwimpVD 44892 nsstr 45073 islptre 45601 gsumlsscl 48352 lincellss 48399 ellcoellss 48408 |
| Copyright terms: Public domain | W3C validator |