![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sstr | Structured version Visualization version GIF version |
Description: Transitivity of subclass relationship. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
Ref | Expression |
---|---|
sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3984 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
2 | 1 | imp 405 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ⊆ wss 3945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ss 3962 |
This theorem is referenced by: sstrd 3988 sylan9ss 3991 ssdifss 4133 uneqin 4278 intss2 5111 ssrnres 6182 relrelss 6277 fcof 6744 fcoOLD 6746 fssres 6761 ssimaex 6980 dff3 7107 tpostpos2 8251 smores 8371 om00 8594 omeulem2 8602 cofonr 8693 naddunif 8712 pmss12g 8886 unblem1 9318 unblem2 9319 unblem3 9320 unblem4 9321 isfinite2 9324 cantnfval2 9692 cantnfle 9694 rankxplim3 9904 alephinit 10118 dfac12lem2 10167 ackbij1lem11 10253 cfeq0 10279 cfsuc 10280 cff1 10281 cflim2 10286 cfss 10288 cfslb2n 10291 cofsmo 10292 cfsmolem 10293 fin23lem34 10369 fin1a2lem13 10435 axdc3lem2 10474 axdclem 10542 pwcfsdom 10606 wunfi 10744 tskxpss 10795 tskcard 10804 suprzcl 12672 uzwo 12925 uzwo2 12926 infssuzle 12945 infssuzcl 12946 supxrbnd 13339 supxrgtmnf 13340 supxrre1 13341 supxrre2 13342 supxrss 13343 infxrss 13350 iccsupr 13451 hashf1lem2 14449 trclun 14993 fsum2d 15749 fsumabs 15779 fsumrlim 15789 fsumo1 15790 fprod2d 15957 rpnnen2lem4 16193 rpnnen2lem7 16196 ramub2 16982 ressinbas 17225 ressress 17228 submre 17584 mrcss 17595 mreacs 17637 drsdirfi 18296 clatglbss 18510 ipopos 18527 cntz2ss 19290 pgrpsubgsymg 19368 ablfac1eulem 20033 subrngint 20501 subrgint 20538 tgval 22888 mretopd 23026 ssnei 23044 opnneiss 23052 restdis 23112 restcls 23115 restntr 23116 tgcnp 23187 fbssfi 23771 fgss2 23808 fgcl 23812 supfil 23829 alexsubALTlem3 23983 alexsubALTlem4 23984 cnextcn 24001 ustex3sym 24152 trust 24164 restutop 24172 utop2nei 24185 cfiluweak 24230 blssexps 24362 blssex 24363 mopni3 24433 metss 24447 metcnp3 24479 metust 24497 cfilucfil 24498 psmetutop 24506 tgioo 24742 xrsmopn 24758 fsumcn 24818 cncfmptid 24863 iscmet3lem2 25250 caussi 25255 ovolsslem 25443 ovolsscl 25445 ovolssnul 25446 opnmblALT 25562 itgfsum 25786 limcresi 25844 dvmptfsum 25937 plyss 26163 madebdayim 27844 cofcutrtime 27877 nbuhgr 29212 chsupunss 31210 shsupunss 31212 spanss 31214 shslubi 31251 shlub 31280 mdsl1i 32187 mdsl2i 32188 cvmdi 32190 mdslmd1lem1 32191 mdslmd1lem2 32192 mdslmd2i 32196 mdslmd4i 32199 atomli 32248 atcvatlem 32251 chirredlem2 32257 chirredi 32260 mdsymlem5 32273 xrge0infss 32587 tpr2rico 33583 sigainb 33825 dya2icoseg2 33968 omssubadd 33990 eulerpartlemn 34071 ballotlem2 34178 nummin 34784 cvmlift2lem12 34994 opnbnd 35879 fneint 35902 dissneqlem 36889 inunissunidif 36924 pibt2 36966 fin2so 37150 matunitlindflem1 37159 mblfinlem4 37203 ismblfin 37204 filbcmb 37283 heiborlem10 37363 igenmin 37607 lssatle 38556 paddss1 39359 paddss2 39360 paddss12 39361 paddssw2 39386 pclssN 39436 pclfinN 39442 polsubN 39449 2polvalN 39456 2polssN 39457 3polN 39458 2pmaplubN 39468 pnonsingN 39475 polsubclN 39494 dihord6apre 40798 dochsscl 40910 mapdordlem2 41179 isnacs3 42195 itgoss 42652 ofoaid1 42852 ofoaid2 42853 sspwimp 44422 sspwimpVD 44423 nsstr 44526 islptre 45070 gsumlsscl 47559 lincellss 47606 ellcoellss 47615 |
Copyright terms: Public domain | W3C validator |