Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sstr | Structured version Visualization version GIF version |
Description: Transitivity of subclass relationship. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
Ref | Expression |
---|---|
sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3928 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
2 | 1 | imp 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: sstrd 3931 sylan9ss 3934 ssdifss 4070 uneqin 4212 intss2 5037 ssrnres 6081 relrelss 6176 fcof 6623 fcoOLD 6625 fssres 6640 ssimaex 6853 dff3 6976 tpostpos2 8063 smores 8183 om00 8406 omeulem2 8414 pmss12g 8657 unblem1 9066 unblem2 9067 unblem3 9068 unblem4 9069 isfinite2 9072 cantnfval2 9427 cantnfle 9429 rankxplim3 9639 alephinit 9851 dfac12lem2 9900 ackbij1lem11 9986 cfeq0 10012 cfsuc 10013 cff1 10014 cflim2 10019 cfss 10021 cfslb2n 10024 cofsmo 10025 cfsmolem 10026 fin23lem34 10102 fin1a2lem13 10168 axdc3lem2 10207 axdclem 10275 pwcfsdom 10339 wunfi 10477 tskxpss 10528 tskcard 10537 suprzcl 12400 uzwo 12651 uzwo2 12652 infssuzle 12671 infssuzcl 12672 supxrbnd 13062 supxrgtmnf 13063 supxrre1 13064 supxrre2 13065 supxrss 13066 infxrss 13073 iccsupr 13174 hashf1lem2 14170 trclun 14725 fsum2d 15483 fsumabs 15513 fsumrlim 15523 fsumo1 15524 fprod2d 15691 rpnnen2lem4 15926 rpnnen2lem7 15929 ramub2 16715 ressinbas 16955 ressress 16958 submre 17314 mrcss 17325 mreacs 17367 drsdirfi 18023 clatglbss 18237 ipopos 18254 cntz2ss 18939 pgrpsubgsymg 19017 ablfac1eulem 19675 subrgint 20046 tgval 22105 mretopd 22243 ssnei 22261 opnneiss 22269 restdis 22329 restcls 22332 restntr 22333 tgcnp 22404 fbssfi 22988 fgss2 23025 fgcl 23029 supfil 23046 alexsubALTlem3 23200 alexsubALTlem4 23201 cnextcn 23218 ustex3sym 23369 trust 23381 restutop 23389 utop2nei 23402 cfiluweak 23447 blssexps 23579 blssex 23580 mopni3 23650 metss 23664 metcnp3 23696 metust 23714 cfilucfil 23715 psmetutop 23723 tgioo 23959 xrsmopn 23975 fsumcn 24033 cncfmptid 24076 iscmet3lem2 24456 caussi 24461 ovolsslem 24648 ovolsscl 24650 ovolssnul 24651 opnmblALT 24767 itgfsum 24991 limcresi 25049 dvmptfsum 25139 plyss 25360 nbuhgr 27710 chsupunss 29706 shsupunss 29708 spanss 29710 shslubi 29747 shlub 29776 mdsl1i 30683 mdsl2i 30684 cvmdi 30686 mdslmd1lem1 30687 mdslmd1lem2 30688 mdslmd2i 30692 mdslmd4i 30695 atomli 30744 atcvatlem 30747 chirredlem2 30753 chirredi 30756 mdsymlem5 30769 xrge0infss 31083 tpr2rico 31862 sigainb 32104 dya2icoseg2 32245 omssubadd 32267 eulerpartlemn 32348 ballotlem2 32455 nummin 33063 cvmlift2lem12 33276 madebdayim 34070 cofcutrtime 34093 opnbnd 34514 fneint 34537 dissneqlem 35511 inunissunidif 35546 pibt2 35588 fin2so 35764 matunitlindflem1 35773 mblfinlem4 35817 ismblfin 35818 filbcmb 35898 heiborlem10 35978 igenmin 36222 lssatle 37029 paddss1 37831 paddss2 37832 paddss12 37833 paddssw2 37858 pclssN 37908 pclfinN 37914 polsubN 37921 2polvalN 37928 2polssN 37929 3polN 37930 2pmaplubN 37940 pnonsingN 37947 polsubclN 37966 dihord6apre 39270 dochsscl 39382 mapdordlem2 39651 isnacs3 40532 itgoss 40988 sspwimp 42538 sspwimpVD 42539 nsstr 42645 islptre 43160 gsumlsscl 45719 lincellss 45767 ellcoellss 45776 |
Copyright terms: Public domain | W3C validator |