![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sstr | Structured version Visualization version GIF version |
Description: Transitivity of subclass relationship. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
Ref | Expression |
---|---|
sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 4001 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
2 | 1 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3979 |
This theorem is referenced by: sstrd 4005 sylan9ss 4008 ssdifss 4149 uneqin 4294 intss2 5112 ssrnres 6199 relrelss 6294 fcof 6759 fssres 6774 ssimaex 6993 dff3 7119 tpostpos2 8270 smores 8390 om00 8611 omeulem2 8619 cofonr 8710 naddunif 8729 pmss12g 8907 unblem1 9325 unblem2 9326 unblem3 9327 unblem4 9328 isfinite2 9331 cantnfval2 9706 cantnfle 9708 rankxplim3 9918 alephinit 10132 dfac12lem2 10182 ackbij1lem11 10266 cfeq0 10293 cfsuc 10294 cff1 10295 cflim2 10300 cfss 10302 cfslb2n 10305 cofsmo 10306 cfsmolem 10307 fin23lem34 10383 fin1a2lem13 10449 axdc3lem2 10488 axdclem 10556 pwcfsdom 10620 wunfi 10758 tskxpss 10809 tskcard 10818 suprzcl 12695 uzwo 12950 uzwo2 12951 infssuzle 12970 infssuzcl 12971 supxrbnd 13366 supxrgtmnf 13367 supxrre1 13368 supxrre2 13369 supxrss 13370 infxrss 13377 iccsupr 13478 hashf1lem2 14491 trclun 15049 fsum2d 15803 fsumabs 15833 fsumrlim 15843 fsumo1 15844 fprod2d 16013 rpnnen2lem4 16249 rpnnen2lem7 16252 ramub2 17047 ressinbas 17290 ressress 17293 submre 17649 mrcss 17660 mreacs 17702 drsdirfi 18362 clatglbss 18576 ipopos 18593 cntz2ss 19365 pgrpsubgsymg 19441 ablfac1eulem 20106 subrngint 20576 subrgint 20611 tgval 22977 mretopd 23115 ssnei 23133 opnneiss 23141 restdis 23201 restcls 23204 restntr 23205 tgcnp 23276 fbssfi 23860 fgss2 23897 fgcl 23901 supfil 23918 alexsubALTlem3 24072 alexsubALTlem4 24073 cnextcn 24090 ustex3sym 24241 trust 24253 restutop 24261 utop2nei 24274 cfiluweak 24319 blssexps 24451 blssex 24452 mopni3 24522 metss 24536 metcnp3 24568 metust 24586 cfilucfil 24587 psmetutop 24595 tgioo 24831 xrsmopn 24847 fsumcn 24907 cncfmptid 24952 iscmet3lem2 25339 caussi 25344 ovolsslem 25532 ovolsscl 25534 ovolssnul 25535 opnmblALT 25651 itgfsum 25876 limcresi 25934 dvmptfsum 26027 plyss 26252 madebdayim 27940 cofcutrtime 27975 nbuhgr 29374 chsupunss 31372 shsupunss 31374 spanss 31376 shslubi 31413 shlub 31442 mdsl1i 32349 mdsl2i 32350 cvmdi 32352 mdslmd1lem1 32353 mdslmd1lem2 32354 mdslmd2i 32358 mdslmd4i 32361 atomli 32410 atcvatlem 32413 chirredlem2 32419 chirredi 32422 mdsymlem5 32435 xrge0infss 32770 tpr2rico 33872 sigainb 34116 dya2icoseg2 34259 omssubadd 34281 eulerpartlemn 34362 ballotlem2 34469 nummin 35083 cvmlift2lem12 35298 opnbnd 36307 fneint 36330 dissneqlem 37322 inunissunidif 37357 pibt2 37399 fin2so 37593 matunitlindflem1 37602 mblfinlem4 37646 ismblfin 37647 filbcmb 37726 heiborlem10 37806 igenmin 38050 lssatle 38996 paddss1 39799 paddss2 39800 paddss12 39801 paddssw2 39826 pclssN 39876 pclfinN 39882 polsubN 39889 2polvalN 39896 2polssN 39897 3polN 39898 2pmaplubN 39908 pnonsingN 39915 polsubclN 39934 dihord6apre 41238 dochsscl 41350 mapdordlem2 41619 isnacs3 42697 itgoss 43151 ofoaid1 43347 ofoaid2 43348 sspwimp 44915 sspwimpVD 44916 nsstr 45034 islptre 45574 gsumlsscl 48224 lincellss 48271 ellcoellss 48280 |
Copyright terms: Public domain | W3C validator |