![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sstr | Structured version Visualization version GIF version |
Description: Transitivity of subclass relationship. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
Ref | Expression |
---|---|
sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 4015 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
2 | 1 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3993 |
This theorem is referenced by: sstrd 4019 sylan9ss 4022 ssdifss 4163 uneqin 4308 intss2 5131 ssrnres 6209 relrelss 6304 fcof 6770 fcoOLD 6772 fssres 6787 ssimaex 7007 dff3 7134 tpostpos2 8288 smores 8408 om00 8631 omeulem2 8639 cofonr 8730 naddunif 8749 pmss12g 8927 unblem1 9356 unblem2 9357 unblem3 9358 unblem4 9359 isfinite2 9362 cantnfval2 9738 cantnfle 9740 rankxplim3 9950 alephinit 10164 dfac12lem2 10214 ackbij1lem11 10298 cfeq0 10325 cfsuc 10326 cff1 10327 cflim2 10332 cfss 10334 cfslb2n 10337 cofsmo 10338 cfsmolem 10339 fin23lem34 10415 fin1a2lem13 10481 axdc3lem2 10520 axdclem 10588 pwcfsdom 10652 wunfi 10790 tskxpss 10841 tskcard 10850 suprzcl 12723 uzwo 12976 uzwo2 12977 infssuzle 12996 infssuzcl 12997 supxrbnd 13390 supxrgtmnf 13391 supxrre1 13392 supxrre2 13393 supxrss 13394 infxrss 13401 iccsupr 13502 hashf1lem2 14505 trclun 15063 fsum2d 15819 fsumabs 15849 fsumrlim 15859 fsumo1 15860 fprod2d 16029 rpnnen2lem4 16265 rpnnen2lem7 16268 ramub2 17061 ressinbas 17304 ressress 17307 submre 17663 mrcss 17674 mreacs 17716 drsdirfi 18375 clatglbss 18589 ipopos 18606 cntz2ss 19375 pgrpsubgsymg 19451 ablfac1eulem 20116 subrngint 20586 subrgint 20623 tgval 22983 mretopd 23121 ssnei 23139 opnneiss 23147 restdis 23207 restcls 23210 restntr 23211 tgcnp 23282 fbssfi 23866 fgss2 23903 fgcl 23907 supfil 23924 alexsubALTlem3 24078 alexsubALTlem4 24079 cnextcn 24096 ustex3sym 24247 trust 24259 restutop 24267 utop2nei 24280 cfiluweak 24325 blssexps 24457 blssex 24458 mopni3 24528 metss 24542 metcnp3 24574 metust 24592 cfilucfil 24593 psmetutop 24601 tgioo 24837 xrsmopn 24853 fsumcn 24913 cncfmptid 24958 iscmet3lem2 25345 caussi 25350 ovolsslem 25538 ovolsscl 25540 ovolssnul 25541 opnmblALT 25657 itgfsum 25882 limcresi 25940 dvmptfsum 26033 plyss 26258 madebdayim 27944 cofcutrtime 27979 nbuhgr 29378 chsupunss 31376 shsupunss 31378 spanss 31380 shslubi 31417 shlub 31446 mdsl1i 32353 mdsl2i 32354 cvmdi 32356 mdslmd1lem1 32357 mdslmd1lem2 32358 mdslmd2i 32362 mdslmd4i 32365 atomli 32414 atcvatlem 32417 chirredlem2 32423 chirredi 32426 mdsymlem5 32439 xrge0infss 32767 tpr2rico 33858 sigainb 34100 dya2icoseg2 34243 omssubadd 34265 eulerpartlemn 34346 ballotlem2 34453 nummin 35067 cvmlift2lem12 35282 opnbnd 36291 fneint 36314 dissneqlem 37306 inunissunidif 37341 pibt2 37383 fin2so 37567 matunitlindflem1 37576 mblfinlem4 37620 ismblfin 37621 filbcmb 37700 heiborlem10 37780 igenmin 38024 lssatle 38971 paddss1 39774 paddss2 39775 paddss12 39776 paddssw2 39801 pclssN 39851 pclfinN 39857 polsubN 39864 2polvalN 39871 2polssN 39872 3polN 39873 2pmaplubN 39883 pnonsingN 39890 polsubclN 39909 dihord6apre 41213 dochsscl 41325 mapdordlem2 41594 isnacs3 42666 itgoss 43120 ofoaid1 43320 ofoaid2 43321 sspwimp 44889 sspwimpVD 44890 nsstr 44997 islptre 45540 gsumlsscl 48108 lincellss 48155 ellcoellss 48164 |
Copyright terms: Public domain | W3C validator |