Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssel | Structured version Visualization version GIF version |
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) Avoid ax-12 2178. (Revised by SN, 27-May-2024.) |
Ref | Expression |
---|---|
ssel | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3861 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | id 22 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
3 | 2 | anim2d 615 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → (𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
4 | 3 | aleximi 1838 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
5 | dfclel 2812 | . . 3 ⊢ (𝐶 ∈ 𝐴 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴)) | |
6 | dfclel 2812 | . . 3 ⊢ (𝐶 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵)) | |
7 | 4, 5, 6 | 3imtr4g 299 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
8 | 1, 7 | sylbi 220 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
Copyright terms: Public domain | W3C validator |