Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sstr2 | Structured version Visualization version GIF version |
Description: Transitivity of subclass relationship. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
sstr2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3919 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | imim1d 82 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
3 | 2 | alimdv 1923 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
4 | dfss2 3912 | . 2 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
5 | dfss2 3912 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∈ wcel 2110 ⊆ wss 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-ss 3909 |
This theorem is referenced by: sstr 3934 sstri 3935 sseq1 3951 sseq2 3952 ssun3 4113 ssun4 4114 ssinss1 4177 sspw 4552 triun 5209 trintss 5213 exss 5382 frss 5557 relss 5692 funss 6451 funimass2 6515 fss 6615 sucexeloni 7653 suceloniOLD 7655 limsssuc 7692 oaordi 8369 oeworde 8416 nnaordi 8441 sbthlem2 8862 sbthlem3 8863 sbthlem6 8866 domunfican 9075 fiint 9079 fiss 9171 dffi3 9178 inf3lem1 9374 trcl 9496 tcss 9512 ac10ct 9801 ackbij2lem4 10009 cfslb 10033 cfslbn 10034 cfcoflem 10039 coftr 10040 fin23lem15 10101 fin23lem20 10104 fin23lem36 10115 isf32lem1 10120 axdc3lem2 10218 ttukeylem2 10277 wunex2 10505 tskcard 10548 clsslem 14706 mrcss 17336 isacs2 17373 lubss 18242 frmdss2 18513 lsmlub 19281 lsslss 20234 lspss 20257 ocv2ss 20889 ocvsscon 20891 lindsss 21042 lsslinds 21049 aspss 21092 mplcoe1 21249 mplcoe5 21252 mdetunilem9 21780 tgss 22129 tgcl 22130 tgss3 22147 clsss 22216 ntrss 22217 neiss 22271 ssnei2 22278 opnnei 22282 cnpnei 22426 cnpco 22429 cncls 22436 cnprest 22451 hauscmp 22569 1stcfb 22607 1stcelcls 22623 reftr 22676 txcnpi 22770 txcnp 22782 txtube 22802 qtoptop2 22861 fgcl 23040 filssufilg 23073 ufileu 23081 uffix 23083 elfm2 23110 fmfnfmlem1 23116 fmco 23123 fbflim2 23139 flffbas 23157 flftg 23158 cnpflf2 23162 alexsubALTlem4 23212 neibl 23668 metcnp3 23707 xlebnum 24139 lebnumii 24140 caubl 24483 caublcls 24484 bcthlem2 24500 bcthlem5 24503 ovolsslem 24659 volsuplem 24730 dyadmbllem 24774 ellimc3 25054 limciun 25069 cpnord 25110 ubthlem1 29241 occon3 29668 chsupval 29706 chsupcl 29711 chsupss 29713 spanss 29719 chsupval2 29781 stlei 30611 dmdbr5 30679 mdsl0 30681 chrelat2i 30736 chirredlem1 30761 mdsymlem5 30778 mdsymlem6 30779 gsumle 31359 gsumvsca1 31488 gsumvsca2 31489 omsmon 32274 cvmliftlem15 33269 ss2mcls 33539 mclsax 33540 clsint2 34527 fgmin 34568 filnetlem4 34579 limsucncmpi 34643 bj-restpw 35272 bj-0int 35281 rdgssun 35558 ptrecube 35786 heiborlem1 35978 heiborlem8 35985 refrelsredund4 36754 refrelredund4 36757 funALTVss 36819 pclssN 37917 dochexmidlem7 39489 incssnn0 40542 islssfg2 40905 hbtlem6 40963 hess 41370 psshepw 41378 clsf2 41718 mnuunid 41877 ismnushort 41901 sspwimpcf 42522 sspwimpcfVD 42523 dvmptfprod 43468 sprsymrelfo 44928 elbigo2 45877 subthinc 46300 setrec1lem2 46373 setrec1lem4 46375 |
Copyright terms: Public domain | W3C validator |