| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sstr2 | Structured version Visualization version GIF version | ||
| Description: Transitivity of subclass relationship. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) Avoid axioms. (Revised by GG, 19-May-2025.) |
| Ref | Expression |
|---|---|
| sstr2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1 83 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) | |
| 2 | 1 | al2imi 1815 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
| 3 | df-ss 3922 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | df-ss 3922 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
| 5 | df-ss 3922 | . . 3 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
| 6 | 4, 5 | imbi12i 350 | . 2 ⊢ ((𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
| 7 | 2, 3, 6 | 3imtr4i 292 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ss 3922 |
| This theorem is referenced by: sstr 3946 sstri 3947 sseq1 3963 sseq2 3964 ssun3 4133 ssun4 4134 ssinss1 4199 sspw 4564 triun 5216 trintss 5220 exss 5410 frss 5587 relss 5729 funss 6505 funimass2 6569 fss 6672 sucexeloniOLD 7750 limsssuc 7790 oaordi 8471 oeworde 8518 nnaordi 8543 sbthlem2 9012 sbthlem3 9013 sbthlem6 9016 domunfican 9230 fiint 9235 fiintOLD 9236 fiss 9333 dffi3 9340 inf3lem1 9543 trcl 9643 tcss 9659 ac10ct 9947 ackbij2lem4 10154 cfslb 10179 cfslbn 10180 cfcoflem 10185 coftr 10186 fin23lem15 10247 fin23lem20 10250 fin23lem36 10261 isf32lem1 10266 axdc3lem2 10364 ttukeylem2 10423 wunex2 10651 tskcard 10694 clsslem 14909 mrcss 17540 isacs2 17577 lubss 18437 frmdss2 18755 lsmlub 19561 gsumle 20042 lsslss 20882 lspss 20905 ocv2ss 21598 ocvsscon 21600 lindsss 21749 lsslinds 21756 aspss 21802 mplcoe1 21960 mplcoe5 21963 mdetunilem9 22523 tgss 22871 tgcl 22872 tgss3 22889 clsss 22957 ntrss 22958 neiss 23012 ssnei2 23019 opnnei 23023 cnpnei 23167 cnpco 23170 cncls 23177 cnprest 23192 hauscmp 23310 1stcfb 23348 1stcelcls 23364 reftr 23417 txcnpi 23511 txcnp 23523 txtube 23543 qtoptop2 23602 fgcl 23781 filssufilg 23814 ufileu 23822 uffix 23824 elfm2 23851 fmfnfmlem1 23857 fmco 23864 fbflim2 23880 flffbas 23898 flftg 23899 cnpflf2 23903 alexsubALTlem4 23953 neibl 24405 metcnp3 24444 xlebnum 24880 lebnumii 24881 caubl 25224 caublcls 25225 bcthlem2 25241 bcthlem5 25244 ovolsslem 25401 volsuplem 25472 dyadmbllem 25516 ellimc3 25796 limciun 25811 cpnord 25853 precsexlem6 28137 precsexlem7 28138 ubthlem1 30832 occon3 31259 chsupval 31297 chsupcl 31302 chsupss 31304 spanss 31310 chsupval2 31372 stlei 32202 dmdbr5 32270 mdsl0 32272 chrelat2i 32327 chirredlem1 32352 mdsymlem5 32369 mdsymlem6 32370 gsumvsca1 33178 gsumvsca2 33179 omsmon 34265 cvmliftlem15 35270 ss2mcls 35540 mclsax 35541 clsint2 36302 fgmin 36343 filnetlem4 36354 limsucncmpi 36418 bj-restpw 37065 bj-0int 37074 rdgssun 37351 ptrecube 37599 heiborlem1 37790 heiborlem8 37797 refrelsredund4 38608 refrelredund4 38611 funALTVss 38676 pclssN 39873 dochexmidlem7 41445 incssnn0 42684 islssfg2 43044 hbtlem6 43102 hess 43753 psshepw 43761 clsf2 44099 mnuunid 44250 ismnushort 44274 sspwimpcf 44893 sspwimpcfVD 44894 dvmptfprod 45927 sprsymrelfo 47482 elbigo2 48538 subthinc 49429 setrec1lem2 49674 setrec1lem4 49676 setrec2mpt 49683 |
| Copyright terms: Public domain | W3C validator |