| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sstr2 | Structured version Visualization version GIF version | ||
| Description: Transitivity of subclass relationship. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) Avoid axioms. (Revised by GG, 19-May-2025.) |
| Ref | Expression |
|---|---|
| sstr2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1 83 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) | |
| 2 | 1 | al2imi 1815 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
| 3 | df-ss 3934 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | df-ss 3934 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
| 5 | df-ss 3934 | . . 3 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
| 6 | 4, 5 | imbi12i 350 | . 2 ⊢ ((𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
| 7 | 2, 3, 6 | 3imtr4i 292 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ss 3934 |
| This theorem is referenced by: sstr 3958 sstri 3959 sseq1 3975 sseq2 3976 ssun3 4146 ssun4 4147 ssinss1 4212 sspw 4577 triun 5232 trintss 5236 exss 5426 frss 5605 relss 5747 funss 6538 funimass2 6602 fss 6707 sucexeloniOLD 7789 limsssuc 7829 oaordi 8513 oeworde 8560 nnaordi 8585 sbthlem2 9058 sbthlem3 9059 sbthlem6 9062 domunfican 9279 fiint 9284 fiintOLD 9285 fiss 9382 dffi3 9389 inf3lem1 9588 trcl 9688 tcss 9704 ac10ct 9994 ackbij2lem4 10201 cfslb 10226 cfslbn 10227 cfcoflem 10232 coftr 10233 fin23lem15 10294 fin23lem20 10297 fin23lem36 10308 isf32lem1 10313 axdc3lem2 10411 ttukeylem2 10470 wunex2 10698 tskcard 10741 clsslem 14957 mrcss 17584 isacs2 17621 lubss 18479 frmdss2 18797 lsmlub 19601 lsslss 20874 lspss 20897 ocv2ss 21589 ocvsscon 21591 lindsss 21740 lsslinds 21747 aspss 21793 mplcoe1 21951 mplcoe5 21954 mdetunilem9 22514 tgss 22862 tgcl 22863 tgss3 22880 clsss 22948 ntrss 22949 neiss 23003 ssnei2 23010 opnnei 23014 cnpnei 23158 cnpco 23161 cncls 23168 cnprest 23183 hauscmp 23301 1stcfb 23339 1stcelcls 23355 reftr 23408 txcnpi 23502 txcnp 23514 txtube 23534 qtoptop2 23593 fgcl 23772 filssufilg 23805 ufileu 23813 uffix 23815 elfm2 23842 fmfnfmlem1 23848 fmco 23855 fbflim2 23871 flffbas 23889 flftg 23890 cnpflf2 23894 alexsubALTlem4 23944 neibl 24396 metcnp3 24435 xlebnum 24871 lebnumii 24872 caubl 25215 caublcls 25216 bcthlem2 25232 bcthlem5 25235 ovolsslem 25392 volsuplem 25463 dyadmbllem 25507 ellimc3 25787 limciun 25802 cpnord 25844 precsexlem6 28121 precsexlem7 28122 ubthlem1 30806 occon3 31233 chsupval 31271 chsupcl 31276 chsupss 31278 spanss 31284 chsupval2 31346 stlei 32176 dmdbr5 32244 mdsl0 32246 chrelat2i 32301 chirredlem1 32326 mdsymlem5 32343 mdsymlem6 32344 gsumle 33045 gsumvsca1 33186 gsumvsca2 33187 omsmon 34296 cvmliftlem15 35292 ss2mcls 35562 mclsax 35563 clsint2 36324 fgmin 36365 filnetlem4 36376 limsucncmpi 36440 bj-restpw 37087 bj-0int 37096 rdgssun 37373 ptrecube 37621 heiborlem1 37812 heiborlem8 37819 refrelsredund4 38630 refrelredund4 38633 funALTVss 38698 pclssN 39895 dochexmidlem7 41467 incssnn0 42706 islssfg2 43067 hbtlem6 43125 hess 43776 psshepw 43784 clsf2 44122 mnuunid 44273 ismnushort 44297 sspwimpcf 44916 sspwimpcfVD 44917 dvmptfprod 45950 sprsymrelfo 47502 elbigo2 48545 subthinc 49436 setrec1lem2 49681 setrec1lem4 49683 setrec2mpt 49690 |
| Copyright terms: Public domain | W3C validator |