| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sstr2 | Structured version Visualization version GIF version | ||
| Description: Transitivity of subclass relationship. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) Avoid axioms. (Revised by GG, 19-May-2025.) |
| Ref | Expression |
|---|---|
| sstr2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1 83 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) | |
| 2 | 1 | al2imi 1816 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
| 3 | df-ss 3919 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | df-ss 3919 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
| 5 | df-ss 3919 | . . 3 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
| 6 | 4, 5 | imbi12i 350 | . 2 ⊢ ((𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
| 7 | 2, 3, 6 | 3imtr4i 292 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2111 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ss 3919 |
| This theorem is referenced by: sstr 3943 sstri 3944 sseq1 3960 sseq2 3961 ssun3 4130 ssun4 4131 ssinss1 4196 sspw 4561 triun 5212 trintss 5216 exss 5403 frss 5580 relss 5722 funss 6500 funimass2 6564 fss 6667 limsssuc 7780 oaordi 8461 oeworde 8508 nnaordi 8533 sbthlem2 9001 sbthlem3 9002 sbthlem6 9005 domunfican 9206 fiint 9211 fiss 9308 dffi3 9315 inf3lem1 9518 trcl 9618 tcss 9634 ac10ct 9922 ackbij2lem4 10129 cfslb 10154 cfslbn 10155 cfcoflem 10160 coftr 10161 fin23lem15 10222 fin23lem20 10225 fin23lem36 10236 isf32lem1 10241 axdc3lem2 10339 ttukeylem2 10398 wunex2 10626 tskcard 10669 clsslem 14888 mrcss 17519 isacs2 17556 lubss 18416 frmdss2 18768 lsmlub 19574 gsumle 20055 lsslss 20892 lspss 20915 ocv2ss 21608 ocvsscon 21610 lindsss 21759 lsslinds 21766 aspss 21812 mplcoe1 21970 mplcoe5 21973 mdetunilem9 22533 tgss 22881 tgcl 22882 tgss3 22899 clsss 22967 ntrss 22968 neiss 23022 ssnei2 23029 opnnei 23033 cnpnei 23177 cnpco 23180 cncls 23187 cnprest 23202 hauscmp 23320 1stcfb 23358 1stcelcls 23374 reftr 23427 txcnpi 23521 txcnp 23533 txtube 23553 qtoptop2 23612 fgcl 23791 filssufilg 23824 ufileu 23832 uffix 23834 elfm2 23861 fmfnfmlem1 23867 fmco 23874 fbflim2 23890 flffbas 23908 flftg 23909 cnpflf2 23913 alexsubALTlem4 23963 neibl 24414 metcnp3 24453 xlebnum 24889 lebnumii 24890 caubl 25233 caublcls 25234 bcthlem2 25250 bcthlem5 25253 ovolsslem 25410 volsuplem 25481 dyadmbllem 25525 ellimc3 25805 limciun 25820 cpnord 25862 precsexlem6 28148 precsexlem7 28149 ubthlem1 30845 occon3 31272 chsupval 31310 chsupcl 31315 chsupss 31317 spanss 31323 chsupval2 31385 stlei 32215 dmdbr5 32283 mdsl0 32285 chrelat2i 32340 chirredlem1 32365 mdsymlem5 32382 mdsymlem6 32383 gsumvsca1 33190 gsumvsca2 33191 omsmon 34306 cvmliftlem15 35330 ss2mcls 35600 mclsax 35601 clsint2 36362 fgmin 36403 filnetlem4 36414 limsucncmpi 36478 bj-restpw 37125 bj-0int 37134 rdgssun 37411 ptrecube 37659 heiborlem1 37850 heiborlem8 37857 refrelsredund4 38668 refrelredund4 38671 funALTVss 38736 pclssN 39932 dochexmidlem7 41504 incssnn0 42743 islssfg2 43103 hbtlem6 43161 hess 43812 psshepw 43820 clsf2 44158 mnuunid 44309 ismnushort 44333 sspwimpcf 44951 sspwimpcfVD 44952 dvmptfprod 45982 sprsymrelfo 47527 elbigo2 48583 subthinc 49474 setrec1lem2 49719 setrec1lem4 49721 setrec2mpt 49728 |
| Copyright terms: Public domain | W3C validator |