![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sstr2 | Structured version Visualization version GIF version |
Description: Transitivity of subclass relationship. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) Avoid axioms. (Revised by GG, 19-May-2025.) |
Ref | Expression |
---|---|
sstr2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1 83 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) | |
2 | 1 | al2imi 1813 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
3 | df-ss 3993 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
4 | df-ss 3993 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
5 | df-ss 3993 | . . 3 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
6 | 4, 5 | imbi12i 350 | . 2 ⊢ ((𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
7 | 2, 3, 6 | 3imtr4i 292 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∈ wcel 2108 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ss 3993 |
This theorem is referenced by: sstr 4017 sstri 4018 sseq1 4034 sseq2 4035 ssun3 4203 ssun4 4204 ssinss1 4267 sspw 4633 triun 5298 trintss 5302 exss 5483 frss 5664 relss 5805 funss 6597 funimass2 6661 fss 6763 sucexeloniOLD 7846 suceloniOLD 7848 limsssuc 7887 oaordi 8602 oeworde 8649 nnaordi 8674 sbthlem2 9150 sbthlem3 9151 sbthlem6 9154 domunfican 9389 fiint 9394 fiintOLD 9395 fiss 9493 dffi3 9500 inf3lem1 9697 trcl 9797 tcss 9813 ac10ct 10103 ackbij2lem4 10310 cfslb 10335 cfslbn 10336 cfcoflem 10341 coftr 10342 fin23lem15 10403 fin23lem20 10406 fin23lem36 10417 isf32lem1 10422 axdc3lem2 10520 ttukeylem2 10579 wunex2 10807 tskcard 10850 clsslem 15033 mrcss 17674 isacs2 17711 lubss 18583 frmdss2 18898 lsmlub 19706 lsslss 20982 lspss 21005 ocv2ss 21714 ocvsscon 21716 lindsss 21867 lsslinds 21874 aspss 21920 mplcoe1 22078 mplcoe5 22081 mdetunilem9 22647 tgss 22996 tgcl 22997 tgss3 23014 clsss 23083 ntrss 23084 neiss 23138 ssnei2 23145 opnnei 23149 cnpnei 23293 cnpco 23296 cncls 23303 cnprest 23318 hauscmp 23436 1stcfb 23474 1stcelcls 23490 reftr 23543 txcnpi 23637 txcnp 23649 txtube 23669 qtoptop2 23728 fgcl 23907 filssufilg 23940 ufileu 23948 uffix 23950 elfm2 23977 fmfnfmlem1 23983 fmco 23990 fbflim2 24006 flffbas 24024 flftg 24025 cnpflf2 24029 alexsubALTlem4 24079 neibl 24535 metcnp3 24574 xlebnum 25016 lebnumii 25017 caubl 25361 caublcls 25362 bcthlem2 25378 bcthlem5 25381 ovolsslem 25538 volsuplem 25609 dyadmbllem 25653 ellimc3 25934 limciun 25949 cpnord 25991 precsexlem6 28254 precsexlem7 28255 ubthlem1 30902 occon3 31329 chsupval 31367 chsupcl 31372 chsupss 31374 spanss 31380 chsupval2 31442 stlei 32272 dmdbr5 32340 mdsl0 32342 chrelat2i 32397 chirredlem1 32422 mdsymlem5 32439 mdsymlem6 32440 gsumle 33074 gsumvsca1 33205 gsumvsca2 33206 omsmon 34263 cvmliftlem15 35266 ss2mcls 35536 mclsax 35537 clsint2 36295 fgmin 36336 filnetlem4 36347 limsucncmpi 36411 bj-restpw 37058 bj-0int 37067 rdgssun 37344 ptrecube 37580 heiborlem1 37771 heiborlem8 37778 refrelsredund4 38588 refrelredund4 38591 funALTVss 38655 pclssN 39851 dochexmidlem7 41423 incssnn0 42667 islssfg2 43028 hbtlem6 43086 hess 43742 psshepw 43750 clsf2 44088 mnuunid 44246 ismnushort 44270 sspwimpcf 44891 sspwimpcfVD 44892 dvmptfprod 45866 sprsymrelfo 47371 elbigo2 48286 subthinc 48707 setrec1lem2 48780 setrec1lem4 48782 setrec2mpt 48789 |
Copyright terms: Public domain | W3C validator |