![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sstr2 | Structured version Visualization version GIF version |
Description: Transitivity of subclass relationship. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
sstr2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3974 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | imim1d 82 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
3 | 2 | alimdv 1917 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
4 | dfss2 3967 | . 2 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
5 | dfss2 3967 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
6 | 3, 4, 5 | 3imtr4g 295 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2104 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-in 3954 df-ss 3964 |
This theorem is referenced by: sstr 3989 sstri 3990 sseq1 4006 sseq2 4007 ssun3 4173 ssun4 4174 ssinss1 4236 sspw 4612 triun 5279 trintss 5283 exss 5462 frss 5642 relss 5780 funss 6566 funimass2 6630 fss 6733 sucexeloniOLD 7800 suceloniOLD 7802 limsssuc 7841 oaordi 8548 oeworde 8595 nnaordi 8620 sbthlem2 9086 sbthlem3 9087 sbthlem6 9090 domunfican 9322 fiint 9326 fiss 9421 dffi3 9428 inf3lem1 9625 trcl 9725 tcss 9741 ac10ct 10031 ackbij2lem4 10239 cfslb 10263 cfslbn 10264 cfcoflem 10269 coftr 10270 fin23lem15 10331 fin23lem20 10334 fin23lem36 10345 isf32lem1 10350 axdc3lem2 10448 ttukeylem2 10507 wunex2 10735 tskcard 10778 clsslem 14935 mrcss 17564 isacs2 17601 lubss 18470 frmdss2 18780 lsmlub 19573 lsslss 20716 lspss 20739 ocv2ss 21445 ocvsscon 21447 lindsss 21598 lsslinds 21605 aspss 21650 mplcoe1 21811 mplcoe5 21814 mdetunilem9 22342 tgss 22691 tgcl 22692 tgss3 22709 clsss 22778 ntrss 22779 neiss 22833 ssnei2 22840 opnnei 22844 cnpnei 22988 cnpco 22991 cncls 22998 cnprest 23013 hauscmp 23131 1stcfb 23169 1stcelcls 23185 reftr 23238 txcnpi 23332 txcnp 23344 txtube 23364 qtoptop2 23423 fgcl 23602 filssufilg 23635 ufileu 23643 uffix 23645 elfm2 23672 fmfnfmlem1 23678 fmco 23685 fbflim2 23701 flffbas 23719 flftg 23720 cnpflf2 23724 alexsubALTlem4 23774 neibl 24230 metcnp3 24269 xlebnum 24711 lebnumii 24712 caubl 25056 caublcls 25057 bcthlem2 25073 bcthlem5 25076 ovolsslem 25233 volsuplem 25304 dyadmbllem 25348 ellimc3 25628 limciun 25643 cpnord 25685 precsexlem6 27897 precsexlem7 27898 ubthlem1 30390 occon3 30817 chsupval 30855 chsupcl 30860 chsupss 30862 spanss 30868 chsupval2 30930 stlei 31760 dmdbr5 31828 mdsl0 31830 chrelat2i 31885 chirredlem1 31910 mdsymlem5 31927 mdsymlem6 31928 gsumle 32512 gsumvsca1 32641 gsumvsca2 32642 omsmon 33595 cvmliftlem15 34587 ss2mcls 34857 mclsax 34858 clsint2 35517 fgmin 35558 filnetlem4 35569 limsucncmpi 35633 bj-restpw 36276 bj-0int 36285 rdgssun 36562 ptrecube 36791 heiborlem1 36982 heiborlem8 36989 refrelsredund4 37805 refrelredund4 37808 funALTVss 37872 pclssN 39068 dochexmidlem7 40640 incssnn0 41751 islssfg2 42115 hbtlem6 42173 hess 42833 psshepw 42841 clsf2 43179 mnuunid 43338 ismnushort 43362 sspwimpcf 43983 sspwimpcfVD 43984 dvmptfprod 44959 sprsymrelfo 46463 elbigo2 47325 subthinc 47747 setrec1lem2 47820 setrec1lem4 47822 setrec2mpt 47829 |
Copyright terms: Public domain | W3C validator |