| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sstr2 | Structured version Visualization version GIF version | ||
| Description: Transitivity of subclass relationship. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) Avoid axioms. (Revised by GG, 19-May-2025.) |
| Ref | Expression |
|---|---|
| sstr2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1 83 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) | |
| 2 | 1 | al2imi 1815 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
| 3 | df-ss 3931 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | df-ss 3931 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
| 5 | df-ss 3931 | . . 3 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
| 6 | 4, 5 | imbi12i 350 | . 2 ⊢ ((𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
| 7 | 2, 3, 6 | 3imtr4i 292 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ss 3931 |
| This theorem is referenced by: sstr 3955 sstri 3956 sseq1 3972 sseq2 3973 ssun3 4143 ssun4 4144 ssinss1 4209 sspw 4574 triun 5229 trintss 5233 exss 5423 frss 5602 relss 5744 funss 6535 funimass2 6599 fss 6704 sucexeloniOLD 7786 limsssuc 7826 oaordi 8510 oeworde 8557 nnaordi 8582 sbthlem2 9052 sbthlem3 9053 sbthlem6 9056 domunfican 9272 fiint 9277 fiintOLD 9278 fiss 9375 dffi3 9382 inf3lem1 9581 trcl 9681 tcss 9697 ac10ct 9987 ackbij2lem4 10194 cfslb 10219 cfslbn 10220 cfcoflem 10225 coftr 10226 fin23lem15 10287 fin23lem20 10290 fin23lem36 10301 isf32lem1 10306 axdc3lem2 10404 ttukeylem2 10463 wunex2 10691 tskcard 10734 clsslem 14950 mrcss 17577 isacs2 17614 lubss 18472 frmdss2 18790 lsmlub 19594 lsslss 20867 lspss 20890 ocv2ss 21582 ocvsscon 21584 lindsss 21733 lsslinds 21740 aspss 21786 mplcoe1 21944 mplcoe5 21947 mdetunilem9 22507 tgss 22855 tgcl 22856 tgss3 22873 clsss 22941 ntrss 22942 neiss 22996 ssnei2 23003 opnnei 23007 cnpnei 23151 cnpco 23154 cncls 23161 cnprest 23176 hauscmp 23294 1stcfb 23332 1stcelcls 23348 reftr 23401 txcnpi 23495 txcnp 23507 txtube 23527 qtoptop2 23586 fgcl 23765 filssufilg 23798 ufileu 23806 uffix 23808 elfm2 23835 fmfnfmlem1 23841 fmco 23848 fbflim2 23864 flffbas 23882 flftg 23883 cnpflf2 23887 alexsubALTlem4 23937 neibl 24389 metcnp3 24428 xlebnum 24864 lebnumii 24865 caubl 25208 caublcls 25209 bcthlem2 25225 bcthlem5 25228 ovolsslem 25385 volsuplem 25456 dyadmbllem 25500 ellimc3 25780 limciun 25795 cpnord 25837 precsexlem6 28114 precsexlem7 28115 ubthlem1 30799 occon3 31226 chsupval 31264 chsupcl 31269 chsupss 31271 spanss 31277 chsupval2 31339 stlei 32169 dmdbr5 32237 mdsl0 32239 chrelat2i 32294 chirredlem1 32319 mdsymlem5 32336 mdsymlem6 32337 gsumle 33038 gsumvsca1 33179 gsumvsca2 33180 omsmon 34289 cvmliftlem15 35285 ss2mcls 35555 mclsax 35556 clsint2 36317 fgmin 36358 filnetlem4 36369 limsucncmpi 36433 bj-restpw 37080 bj-0int 37089 rdgssun 37366 ptrecube 37614 heiborlem1 37805 heiborlem8 37812 refrelsredund4 38623 refrelredund4 38626 funALTVss 38691 pclssN 39888 dochexmidlem7 41460 incssnn0 42699 islssfg2 43060 hbtlem6 43118 hess 43769 psshepw 43777 clsf2 44115 mnuunid 44266 ismnushort 44290 sspwimpcf 44909 sspwimpcfVD 44910 dvmptfprod 45943 sprsymrelfo 47498 elbigo2 48541 subthinc 49432 setrec1lem2 49677 setrec1lem4 49679 setrec2mpt 49686 |
| Copyright terms: Public domain | W3C validator |