![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sstr2 | Structured version Visualization version GIF version |
Description: Transitivity of subclass relationship. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
sstr2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3976 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | imim1d 82 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
3 | 2 | alimdv 1920 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
4 | dfss2 3969 | . 2 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
5 | dfss2 3969 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∈ wcel 2107 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 |
This theorem is referenced by: sstr 3991 sstri 3992 sseq1 4008 sseq2 4009 ssun3 4175 ssun4 4176 ssinss1 4238 sspw 4614 triun 5281 trintss 5285 exss 5464 frss 5644 relss 5782 funss 6568 funimass2 6632 fss 6735 sucexeloniOLD 7798 suceloniOLD 7800 limsssuc 7839 oaordi 8546 oeworde 8593 nnaordi 8618 sbthlem2 9084 sbthlem3 9085 sbthlem6 9088 domunfican 9320 fiint 9324 fiss 9419 dffi3 9426 inf3lem1 9623 trcl 9723 tcss 9739 ac10ct 10029 ackbij2lem4 10237 cfslb 10261 cfslbn 10262 cfcoflem 10267 coftr 10268 fin23lem15 10329 fin23lem20 10332 fin23lem36 10343 isf32lem1 10348 axdc3lem2 10446 ttukeylem2 10505 wunex2 10733 tskcard 10776 clsslem 14931 mrcss 17560 isacs2 17597 lubss 18466 frmdss2 18744 lsmlub 19532 lsslss 20572 lspss 20595 ocv2ss 21226 ocvsscon 21228 lindsss 21379 lsslinds 21386 aspss 21431 mplcoe1 21592 mplcoe5 21595 mdetunilem9 22122 tgss 22471 tgcl 22472 tgss3 22489 clsss 22558 ntrss 22559 neiss 22613 ssnei2 22620 opnnei 22624 cnpnei 22768 cnpco 22771 cncls 22778 cnprest 22793 hauscmp 22911 1stcfb 22949 1stcelcls 22965 reftr 23018 txcnpi 23112 txcnp 23124 txtube 23144 qtoptop2 23203 fgcl 23382 filssufilg 23415 ufileu 23423 uffix 23425 elfm2 23452 fmfnfmlem1 23458 fmco 23465 fbflim2 23481 flffbas 23499 flftg 23500 cnpflf2 23504 alexsubALTlem4 23554 neibl 24010 metcnp3 24049 xlebnum 24481 lebnumii 24482 caubl 24825 caublcls 24826 bcthlem2 24842 bcthlem5 24845 ovolsslem 25001 volsuplem 25072 dyadmbllem 25116 ellimc3 25396 limciun 25411 cpnord 25452 precsexlem6 27658 precsexlem7 27659 ubthlem1 30123 occon3 30550 chsupval 30588 chsupcl 30593 chsupss 30595 spanss 30601 chsupval2 30663 stlei 31493 dmdbr5 31561 mdsl0 31563 chrelat2i 31618 chirredlem1 31643 mdsymlem5 31660 mdsymlem6 31661 gsumle 32242 gsumvsca1 32371 gsumvsca2 32372 omsmon 33297 cvmliftlem15 34289 ss2mcls 34559 mclsax 34560 clsint2 35214 fgmin 35255 filnetlem4 35266 limsucncmpi 35330 bj-restpw 35973 bj-0int 35982 rdgssun 36259 ptrecube 36488 heiborlem1 36679 heiborlem8 36686 refrelsredund4 37502 refrelredund4 37505 funALTVss 37569 pclssN 38765 dochexmidlem7 40337 incssnn0 41449 islssfg2 41813 hbtlem6 41871 hess 42531 psshepw 42539 clsf2 42877 mnuunid 43036 ismnushort 43060 sspwimpcf 43681 sspwimpcfVD 43682 dvmptfprod 44661 sprsymrelfo 46165 elbigo2 47238 subthinc 47660 setrec1lem2 47733 setrec1lem4 47735 setrec2mpt 47742 |
Copyright terms: Public domain | W3C validator |