Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sstr2 | Structured version Visualization version GIF version |
Description: Transitivity of subclass relationship. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
sstr2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3910 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | imim1d 82 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
3 | 2 | alimdv 1920 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
4 | dfss2 3903 | . 2 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
5 | dfss2 3903 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
6 | 3, 4, 5 | 3imtr4g 295 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2108 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: sstr 3925 sstri 3926 sseq1 3942 sseq2 3943 ssun3 4104 ssun4 4105 ssinss1 4168 sspw 4543 triun 5200 trintss 5204 exss 5372 frss 5547 relss 5682 funss 6437 funimass2 6501 fss 6601 suceloni 7635 limsssuc 7672 oaordi 8339 oeworde 8386 nnaordi 8411 sbthlem2 8824 sbthlem3 8825 sbthlem6 8828 domunfican 9017 fiint 9021 fiss 9113 dffi3 9120 inf3lem1 9316 trcl 9417 tcss 9433 ac10ct 9721 ackbij2lem4 9929 cfslb 9953 cfslbn 9954 cfcoflem 9959 coftr 9960 fin23lem15 10021 fin23lem20 10024 fin23lem36 10035 isf32lem1 10040 axdc3lem2 10138 ttukeylem2 10197 wunex2 10425 tskcard 10468 clsslem 14623 mrcss 17242 isacs2 17279 lubss 18146 frmdss2 18417 lsmlub 19185 lsslss 20138 lspss 20161 ocv2ss 20790 ocvsscon 20792 lindsss 20941 lsslinds 20948 aspss 20991 mplcoe1 21148 mplcoe5 21151 mdetunilem9 21677 tgss 22026 tgcl 22027 tgss3 22044 clsss 22113 ntrss 22114 neiss 22168 ssnei2 22175 opnnei 22179 cnpnei 22323 cnpco 22326 cncls 22333 cnprest 22348 hauscmp 22466 1stcfb 22504 1stcelcls 22520 reftr 22573 txcnpi 22667 txcnp 22679 txtube 22699 qtoptop2 22758 fgcl 22937 filssufilg 22970 ufileu 22978 uffix 22980 elfm2 23007 fmfnfmlem1 23013 fmco 23020 fbflim2 23036 flffbas 23054 flftg 23055 cnpflf2 23059 alexsubALTlem4 23109 neibl 23563 metcnp3 23602 xlebnum 24034 lebnumii 24035 caubl 24377 caublcls 24378 bcthlem2 24394 bcthlem5 24397 ovolsslem 24553 volsuplem 24624 dyadmbllem 24668 ellimc3 24948 limciun 24963 cpnord 25004 ubthlem1 29133 occon3 29560 chsupval 29598 chsupcl 29603 chsupss 29605 spanss 29611 chsupval2 29673 stlei 30503 dmdbr5 30571 mdsl0 30573 chrelat2i 30628 chirredlem1 30653 mdsymlem5 30670 mdsymlem6 30671 gsumle 31252 gsumvsca1 31381 gsumvsca2 31382 omsmon 32165 cvmliftlem15 33160 ss2mcls 33430 mclsax 33431 clsint2 34445 fgmin 34486 filnetlem4 34497 limsucncmpi 34561 bj-restpw 35190 bj-0int 35199 rdgssun 35476 ptrecube 35704 heiborlem1 35896 heiborlem8 35903 refrelsredund4 36672 refrelredund4 36675 funALTVss 36737 pclssN 37835 dochexmidlem7 39407 incssnn0 40449 islssfg2 40812 hbtlem6 40870 hess 41277 psshepw 41285 clsf2 41625 mnuunid 41784 ismnushort 41808 sspwimpcf 42429 sspwimpcfVD 42430 dvmptfprod 43376 sprsymrelfo 44837 elbigo2 45786 subthinc 46209 setrec1lem2 46280 setrec1lem4 46282 |
Copyright terms: Public domain | W3C validator |