| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sstr2 | Structured version Visualization version GIF version | ||
| Description: Transitivity of subclass relationship. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) Avoid axioms. (Revised by GG, 19-May-2025.) |
| Ref | Expression |
|---|---|
| sstr2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1 83 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) | |
| 2 | 1 | al2imi 1816 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
| 3 | df-ss 3915 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | df-ss 3915 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
| 5 | df-ss 3915 | . . 3 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
| 6 | 4, 5 | imbi12i 350 | . 2 ⊢ ((𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
| 7 | 2, 3, 6 | 3imtr4i 292 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2113 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ss 3915 |
| This theorem is referenced by: sstr 3939 sstri 3940 sseq1 3956 sseq2 3957 ssun3 4129 ssun4 4130 ssinss1 4195 sspw 4560 triun 5214 trintss 5218 exss 5406 frss 5583 relss 5726 funss 6505 funimass2 6569 fss 6672 limsssuc 7786 oaordi 8467 oeworde 8514 nnaordi 8539 sbthlem2 9008 sbthlem3 9009 sbthlem6 9012 domunfican 9213 fiint 9218 fiss 9315 dffi3 9322 inf3lem1 9525 trcl 9625 tcss 9639 ac10ct 9932 ackbij2lem4 10139 cfslb 10164 cfslbn 10165 cfcoflem 10170 coftr 10171 fin23lem15 10232 fin23lem20 10235 fin23lem36 10246 isf32lem1 10251 axdc3lem2 10349 ttukeylem2 10408 wunex2 10636 tskcard 10679 clsslem 14893 mrcss 17524 isacs2 17561 lubss 18421 frmdss2 18773 lsmlub 19578 gsumle 20059 lsslss 20896 lspss 20919 ocv2ss 21612 ocvsscon 21614 lindsss 21763 lsslinds 21770 aspss 21816 mplcoe1 21973 mplcoe5 21976 mdetunilem9 22536 tgss 22884 tgcl 22885 tgss3 22902 clsss 22970 ntrss 22971 neiss 23025 ssnei2 23032 opnnei 23036 cnpnei 23180 cnpco 23183 cncls 23190 cnprest 23205 hauscmp 23323 1stcfb 23361 1stcelcls 23377 reftr 23430 txcnpi 23524 txcnp 23536 txtube 23556 qtoptop2 23615 fgcl 23794 filssufilg 23827 ufileu 23835 uffix 23837 elfm2 23864 fmfnfmlem1 23870 fmco 23877 fbflim2 23893 flffbas 23911 flftg 23912 cnpflf2 23916 alexsubALTlem4 23966 neibl 24417 metcnp3 24456 xlebnum 24892 lebnumii 24893 caubl 25236 caublcls 25237 bcthlem2 25253 bcthlem5 25256 ovolsslem 25413 volsuplem 25484 dyadmbllem 25528 ellimc3 25808 limciun 25823 cpnord 25865 precsexlem6 28151 precsexlem7 28152 ubthlem1 30852 occon3 31279 chsupval 31317 chsupcl 31322 chsupss 31324 spanss 31330 chsupval2 31392 stlei 32222 dmdbr5 32290 mdsl0 32292 chrelat2i 32347 chirredlem1 32372 mdsymlem5 32389 mdsymlem6 32390 gsumvsca1 33202 gsumvsca2 33203 omsmon 34332 cvmliftlem15 35363 ss2mcls 35633 mclsax 35634 clsint2 36394 fgmin 36435 filnetlem4 36446 limsucncmpi 36510 bj-restpw 37157 bj-0int 37166 rdgssun 37443 ptrecube 37680 heiborlem1 37871 heiborlem8 37878 refrelsredund4 38748 refrelredund4 38751 funALTVss 38817 pclssN 40013 dochexmidlem7 41585 incssnn0 42828 islssfg2 43188 hbtlem6 43246 hess 43897 psshepw 43905 clsf2 44243 mnuunid 44394 ismnushort 44418 sspwimpcf 45036 sspwimpcfVD 45037 dvmptfprod 46067 sprsymrelfo 47621 elbigo2 48677 subthinc 49568 setrec1lem2 49813 setrec1lem4 49815 setrec2mpt 49822 |
| Copyright terms: Public domain | W3C validator |