![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sstr2 | Structured version Visualization version GIF version |
Description: Transitivity of subclass relationship. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
sstr2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3974 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | imim1d 82 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
3 | 2 | alimdv 1919 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
4 | dfss2 3967 | . 2 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
5 | dfss2 3967 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
6 | 3, 4, 5 | 3imtr4g 295 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2106 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3954 df-ss 3964 |
This theorem is referenced by: sstr 3989 sstri 3990 sseq1 4006 sseq2 4007 ssun3 4173 ssun4 4174 ssinss1 4236 sspw 4612 triun 5279 trintss 5283 exss 5462 frss 5642 relss 5779 funss 6564 funimass2 6628 fss 6731 sucexeloniOLD 7794 suceloniOLD 7796 limsssuc 7835 oaordi 8542 oeworde 8589 nnaordi 8614 sbthlem2 9080 sbthlem3 9081 sbthlem6 9084 domunfican 9316 fiint 9320 fiss 9415 dffi3 9422 inf3lem1 9619 trcl 9719 tcss 9735 ac10ct 10025 ackbij2lem4 10233 cfslb 10257 cfslbn 10258 cfcoflem 10263 coftr 10264 fin23lem15 10325 fin23lem20 10328 fin23lem36 10339 isf32lem1 10344 axdc3lem2 10442 ttukeylem2 10501 wunex2 10729 tskcard 10772 clsslem 14927 mrcss 17556 isacs2 17593 lubss 18462 frmdss2 18740 lsmlub 19526 lsslss 20564 lspss 20587 ocv2ss 21217 ocvsscon 21219 lindsss 21370 lsslinds 21377 aspss 21422 mplcoe1 21583 mplcoe5 21586 mdetunilem9 22113 tgss 22462 tgcl 22463 tgss3 22480 clsss 22549 ntrss 22550 neiss 22604 ssnei2 22611 opnnei 22615 cnpnei 22759 cnpco 22762 cncls 22769 cnprest 22784 hauscmp 22902 1stcfb 22940 1stcelcls 22956 reftr 23009 txcnpi 23103 txcnp 23115 txtube 23135 qtoptop2 23194 fgcl 23373 filssufilg 23406 ufileu 23414 uffix 23416 elfm2 23443 fmfnfmlem1 23449 fmco 23456 fbflim2 23472 flffbas 23490 flftg 23491 cnpflf2 23495 alexsubALTlem4 23545 neibl 24001 metcnp3 24040 xlebnum 24472 lebnumii 24473 caubl 24816 caublcls 24817 bcthlem2 24833 bcthlem5 24836 ovolsslem 24992 volsuplem 25063 dyadmbllem 25107 ellimc3 25387 limciun 25402 cpnord 25443 precsexlem6 27647 precsexlem7 27648 ubthlem1 30110 occon3 30537 chsupval 30575 chsupcl 30580 chsupss 30582 spanss 30588 chsupval2 30650 stlei 31480 dmdbr5 31548 mdsl0 31550 chrelat2i 31605 chirredlem1 31630 mdsymlem5 31647 mdsymlem6 31648 gsumle 32229 gsumvsca1 32358 gsumvsca2 32359 omsmon 33285 cvmliftlem15 34277 ss2mcls 34547 mclsax 34548 clsint2 35202 fgmin 35243 filnetlem4 35254 limsucncmpi 35318 bj-restpw 35961 bj-0int 35970 rdgssun 36247 ptrecube 36476 heiborlem1 36667 heiborlem8 36674 refrelsredund4 37490 refrelredund4 37493 funALTVss 37557 pclssN 38753 dochexmidlem7 40325 incssnn0 41434 islssfg2 41798 hbtlem6 41856 hess 42516 psshepw 42524 clsf2 42862 mnuunid 43021 ismnushort 43045 sspwimpcf 43666 sspwimpcfVD 43667 dvmptfprod 44647 sprsymrelfo 46151 elbigo2 47191 subthinc 47613 setrec1lem2 47686 setrec1lem4 47688 setrec2mpt 47695 |
Copyright terms: Public domain | W3C validator |