| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sstr2 | Structured version Visualization version GIF version | ||
| Description: Transitivity of subclass relationship. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) Avoid axioms. (Revised by GG, 19-May-2025.) |
| Ref | Expression |
|---|---|
| sstr2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1 83 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) | |
| 2 | 1 | al2imi 1815 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
| 3 | df-ss 3943 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | df-ss 3943 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
| 5 | df-ss 3943 | . . 3 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
| 6 | 4, 5 | imbi12i 350 | . 2 ⊢ ((𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
| 7 | 2, 3, 6 | 3imtr4i 292 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2108 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ss 3943 |
| This theorem is referenced by: sstr 3967 sstri 3968 sseq1 3984 sseq2 3985 ssun3 4155 ssun4 4156 ssinss1 4221 sspw 4586 triun 5244 trintss 5248 exss 5438 frss 5618 relss 5760 funss 6554 funimass2 6618 fss 6721 sucexeloniOLD 7802 suceloniOLD 7804 limsssuc 7843 oaordi 8556 oeworde 8603 nnaordi 8628 sbthlem2 9096 sbthlem3 9097 sbthlem6 9100 domunfican 9331 fiint 9336 fiintOLD 9337 fiss 9434 dffi3 9441 inf3lem1 9640 trcl 9740 tcss 9756 ac10ct 10046 ackbij2lem4 10253 cfslb 10278 cfslbn 10279 cfcoflem 10284 coftr 10285 fin23lem15 10346 fin23lem20 10349 fin23lem36 10360 isf32lem1 10365 axdc3lem2 10463 ttukeylem2 10522 wunex2 10750 tskcard 10793 clsslem 15001 mrcss 17626 isacs2 17663 lubss 18521 frmdss2 18839 lsmlub 19643 lsslss 20916 lspss 20939 ocv2ss 21631 ocvsscon 21633 lindsss 21782 lsslinds 21789 aspss 21835 mplcoe1 21993 mplcoe5 21996 mdetunilem9 22556 tgss 22904 tgcl 22905 tgss3 22922 clsss 22990 ntrss 22991 neiss 23045 ssnei2 23052 opnnei 23056 cnpnei 23200 cnpco 23203 cncls 23210 cnprest 23225 hauscmp 23343 1stcfb 23381 1stcelcls 23397 reftr 23450 txcnpi 23544 txcnp 23556 txtube 23576 qtoptop2 23635 fgcl 23814 filssufilg 23847 ufileu 23855 uffix 23857 elfm2 23884 fmfnfmlem1 23890 fmco 23897 fbflim2 23913 flffbas 23931 flftg 23932 cnpflf2 23936 alexsubALTlem4 23986 neibl 24438 metcnp3 24477 xlebnum 24913 lebnumii 24914 caubl 25258 caublcls 25259 bcthlem2 25275 bcthlem5 25278 ovolsslem 25435 volsuplem 25506 dyadmbllem 25550 ellimc3 25830 limciun 25845 cpnord 25887 precsexlem6 28153 precsexlem7 28154 ubthlem1 30797 occon3 31224 chsupval 31262 chsupcl 31267 chsupss 31269 spanss 31275 chsupval2 31337 stlei 32167 dmdbr5 32235 mdsl0 32237 chrelat2i 32292 chirredlem1 32317 mdsymlem5 32334 mdsymlem6 32335 gsumle 33038 gsumvsca1 33169 gsumvsca2 33170 omsmon 34276 cvmliftlem15 35266 ss2mcls 35536 mclsax 35537 clsint2 36293 fgmin 36334 filnetlem4 36345 limsucncmpi 36409 bj-restpw 37056 bj-0int 37065 rdgssun 37342 ptrecube 37590 heiborlem1 37781 heiborlem8 37788 refrelsredund4 38596 refrelredund4 38599 funALTVss 38663 pclssN 39859 dochexmidlem7 41431 incssnn0 42681 islssfg2 43042 hbtlem6 43100 hess 43751 psshepw 43759 clsf2 44097 mnuunid 44249 ismnushort 44273 sspwimpcf 44892 sspwimpcfVD 44893 dvmptfprod 45922 sprsymrelfo 47459 elbigo2 48480 subthinc 49277 setrec1lem2 49500 setrec1lem4 49502 setrec2mpt 49509 |
| Copyright terms: Public domain | W3C validator |