Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sstr2 | Structured version Visualization version GIF version |
Description: Transitivity of subclass relationship. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
sstr2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3914 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | imim1d 82 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
3 | 2 | alimdv 1919 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
4 | dfss2 3907 | . 2 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
5 | dfss2 3907 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2106 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: sstr 3929 sstri 3930 sseq1 3946 sseq2 3947 ssun3 4108 ssun4 4109 ssinss1 4171 sspw 4546 triun 5204 trintss 5208 exss 5378 frss 5556 relss 5692 funss 6453 funimass2 6517 fss 6617 sucexeloni 7658 suceloniOLD 7660 limsssuc 7697 oaordi 8377 oeworde 8424 nnaordi 8449 sbthlem2 8871 sbthlem3 8872 sbthlem6 8875 domunfican 9087 fiint 9091 fiss 9183 dffi3 9190 inf3lem1 9386 trcl 9486 tcss 9502 ac10ct 9790 ackbij2lem4 9998 cfslb 10022 cfslbn 10023 cfcoflem 10028 coftr 10029 fin23lem15 10090 fin23lem20 10093 fin23lem36 10104 isf32lem1 10109 axdc3lem2 10207 ttukeylem2 10266 wunex2 10494 tskcard 10537 clsslem 14695 mrcss 17325 isacs2 17362 lubss 18231 frmdss2 18502 lsmlub 19270 lsslss 20223 lspss 20246 ocv2ss 20878 ocvsscon 20880 lindsss 21031 lsslinds 21038 aspss 21081 mplcoe1 21238 mplcoe5 21241 mdetunilem9 21769 tgss 22118 tgcl 22119 tgss3 22136 clsss 22205 ntrss 22206 neiss 22260 ssnei2 22267 opnnei 22271 cnpnei 22415 cnpco 22418 cncls 22425 cnprest 22440 hauscmp 22558 1stcfb 22596 1stcelcls 22612 reftr 22665 txcnpi 22759 txcnp 22771 txtube 22791 qtoptop2 22850 fgcl 23029 filssufilg 23062 ufileu 23070 uffix 23072 elfm2 23099 fmfnfmlem1 23105 fmco 23112 fbflim2 23128 flffbas 23146 flftg 23147 cnpflf2 23151 alexsubALTlem4 23201 neibl 23657 metcnp3 23696 xlebnum 24128 lebnumii 24129 caubl 24472 caublcls 24473 bcthlem2 24489 bcthlem5 24492 ovolsslem 24648 volsuplem 24719 dyadmbllem 24763 ellimc3 25043 limciun 25058 cpnord 25099 ubthlem1 29232 occon3 29659 chsupval 29697 chsupcl 29702 chsupss 29704 spanss 29710 chsupval2 29772 stlei 30602 dmdbr5 30670 mdsl0 30672 chrelat2i 30727 chirredlem1 30752 mdsymlem5 30769 mdsymlem6 30770 gsumle 31350 gsumvsca1 31479 gsumvsca2 31480 omsmon 32265 cvmliftlem15 33260 ss2mcls 33530 mclsax 33531 clsint2 34518 fgmin 34559 filnetlem4 34570 limsucncmpi 34634 bj-restpw 35263 bj-0int 35272 rdgssun 35549 ptrecube 35777 heiborlem1 35969 heiborlem8 35976 refrelsredund4 36745 refrelredund4 36748 funALTVss 36810 pclssN 37908 dochexmidlem7 39480 incssnn0 40533 islssfg2 40896 hbtlem6 40954 hess 41388 psshepw 41396 clsf2 41736 mnuunid 41895 ismnushort 41919 sspwimpcf 42540 sspwimpcfVD 42541 dvmptfprod 43486 sprsymrelfo 44949 elbigo2 45898 subthinc 46321 setrec1lem2 46394 setrec1lem4 46396 |
Copyright terms: Public domain | W3C validator |