MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an1b Structured version   Visualization version   GIF version

Theorem syl3an1b 1401
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an1b.1 (𝜑𝜓)
syl3an1b.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an1b ((𝜑𝜒𝜃) → 𝜏)

Proof of Theorem syl3an1b
StepHypRef Expression
1 syl3an1b.1 . . 3 (𝜑𝜓)
21biimpi 215 . 2 (𝜑𝜓)
3 syl3an1b.2 . 2 ((𝜓𝜒𝜃) → 𝜏)
42, 3syl3an1 1161 1 ((𝜑𝜒𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  ovmpoelrn  7885  dif1en  8907  irrmul  12643  xrlttr  12803  flfneii  23051  padct  30956  crefdf  31700  divrngcl  36042
  Copyright terms: Public domain W3C validator