MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an1b Structured version   Visualization version   GIF version

Theorem syl3an1b 1402
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an1b.1 (𝜑𝜓)
syl3an1b.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an1b ((𝜑𝜒𝜃) → 𝜏)

Proof of Theorem syl3an1b
StepHypRef Expression
1 syl3an1b.1 . . 3 (𝜑𝜓)
21biimpi 216 . 2 (𝜑𝜓)
3 syl3an1b.2 . 2 ((𝜓𝜒𝜃) → 𝜏)
42, 3syl3an1 1162 1 ((𝜑𝜒𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ovmpoelrn  8096  dif1enOLD  9201  irrmul  13014  xrlttr  13179  flfneii  24016  padct  32737  crefdf  33809  divrngcl  37944
  Copyright terms: Public domain W3C validator