![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > crefdf | Structured version Visualization version GIF version |
Description: A formulation of crefi 32815 easier to use for definitions. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
crefi.x | ⊢ 𝑋 = ∪ 𝐽 |
crefdf.b | ⊢ 𝐵 = CovHasRef𝐴 |
crefdf.p | ⊢ (𝑧 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
crefdf | ⊢ ((𝐽 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ 𝒫 𝐽(𝜑 ∧ 𝑧Ref𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crefdf.b | . . . 4 ⊢ 𝐵 = CovHasRef𝐴 | |
2 | 1 | eleq2i 2825 | . . 3 ⊢ (𝐽 ∈ 𝐵 ↔ 𝐽 ∈ CovHasRef𝐴) |
3 | crefi.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | crefi 32815 | . . 3 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) |
5 | 2, 4 | syl3an1b 1403 | . 2 ⊢ ((𝐽 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) |
6 | elin 3963 | . . . . . 6 ⊢ (𝑧 ∈ (𝒫 𝐽 ∩ 𝐴) ↔ (𝑧 ∈ 𝒫 𝐽 ∧ 𝑧 ∈ 𝐴)) | |
7 | crefdf.p | . . . . . . 7 ⊢ (𝑧 ∈ 𝐴 → 𝜑) | |
8 | 7 | anim2i 617 | . . . . . 6 ⊢ ((𝑧 ∈ 𝒫 𝐽 ∧ 𝑧 ∈ 𝐴) → (𝑧 ∈ 𝒫 𝐽 ∧ 𝜑)) |
9 | 6, 8 | sylbi 216 | . . . . 5 ⊢ (𝑧 ∈ (𝒫 𝐽 ∩ 𝐴) → (𝑧 ∈ 𝒫 𝐽 ∧ 𝜑)) |
10 | 9 | anim1i 615 | . . . 4 ⊢ ((𝑧 ∈ (𝒫 𝐽 ∩ 𝐴) ∧ 𝑧Ref𝐶) → ((𝑧 ∈ 𝒫 𝐽 ∧ 𝜑) ∧ 𝑧Ref𝐶)) |
11 | anass 469 | . . . 4 ⊢ (((𝑧 ∈ 𝒫 𝐽 ∧ 𝜑) ∧ 𝑧Ref𝐶) ↔ (𝑧 ∈ 𝒫 𝐽 ∧ (𝜑 ∧ 𝑧Ref𝐶))) | |
12 | 10, 11 | sylib 217 | . . 3 ⊢ ((𝑧 ∈ (𝒫 𝐽 ∩ 𝐴) ∧ 𝑧Ref𝐶) → (𝑧 ∈ 𝒫 𝐽 ∧ (𝜑 ∧ 𝑧Ref𝐶))) |
13 | 12 | reximi2 3079 | . 2 ⊢ (∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶 → ∃𝑧 ∈ 𝒫 𝐽(𝜑 ∧ 𝑧Ref𝐶)) |
14 | 5, 13 | syl 17 | 1 ⊢ ((𝐽 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ 𝒫 𝐽(𝜑 ∧ 𝑧Ref𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 ∩ cin 3946 ⊆ wss 3947 𝒫 cpw 4601 ∪ cuni 4907 class class class wbr 5147 Refcref 22997 CovHasRefccref 32810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-cref 32811 |
This theorem is referenced by: cmpfiref 32819 ldlfcntref 32822 |
Copyright terms: Public domain | W3C validator |