Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crefdf Structured version   Visualization version   GIF version

Theorem crefdf 31798
Description: A formulation of crefi 31797 easier to use for definitions. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Hypotheses
Ref Expression
crefi.x 𝑋 = 𝐽
crefdf.b 𝐵 = CovHasRef𝐴
crefdf.p (𝑧𝐴𝜑)
Assertion
Ref Expression
crefdf ((𝐽𝐵𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ 𝒫 𝐽(𝜑𝑧Ref𝐶))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐽   𝑧,𝐶
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝑋(𝑧)

Proof of Theorem crefdf
StepHypRef Expression
1 crefdf.b . . . 4 𝐵 = CovHasRef𝐴
21eleq2i 2830 . . 3 (𝐽𝐵𝐽 ∈ CovHasRef𝐴)
3 crefi.x . . . 4 𝑋 = 𝐽
43crefi 31797 . . 3 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)
52, 4syl3an1b 1402 . 2 ((𝐽𝐵𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)
6 elin 3903 . . . . . 6 (𝑧 ∈ (𝒫 𝐽𝐴) ↔ (𝑧 ∈ 𝒫 𝐽𝑧𝐴))
7 crefdf.p . . . . . . 7 (𝑧𝐴𝜑)
87anim2i 617 . . . . . 6 ((𝑧 ∈ 𝒫 𝐽𝑧𝐴) → (𝑧 ∈ 𝒫 𝐽𝜑))
96, 8sylbi 216 . . . . 5 (𝑧 ∈ (𝒫 𝐽𝐴) → (𝑧 ∈ 𝒫 𝐽𝜑))
109anim1i 615 . . . 4 ((𝑧 ∈ (𝒫 𝐽𝐴) ∧ 𝑧Ref𝐶) → ((𝑧 ∈ 𝒫 𝐽𝜑) ∧ 𝑧Ref𝐶))
11 anass 469 . . . 4 (((𝑧 ∈ 𝒫 𝐽𝜑) ∧ 𝑧Ref𝐶) ↔ (𝑧 ∈ 𝒫 𝐽 ∧ (𝜑𝑧Ref𝐶)))
1210, 11sylib 217 . . 3 ((𝑧 ∈ (𝒫 𝐽𝐴) ∧ 𝑧Ref𝐶) → (𝑧 ∈ 𝒫 𝐽 ∧ (𝜑𝑧Ref𝐶)))
1312reximi2 3175 . 2 (∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶 → ∃𝑧 ∈ 𝒫 𝐽(𝜑𝑧Ref𝐶))
145, 13syl 17 1 ((𝐽𝐵𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ 𝒫 𝐽(𝜑𝑧Ref𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  cin 3886  wss 3887  𝒫 cpw 4533   cuni 4839   class class class wbr 5074  Refcref 22653  CovHasRefccref 31792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-cref 31793
This theorem is referenced by:  cmpfiref  31801  ldlfcntref  31804
  Copyright terms: Public domain W3C validator