Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > crefdf | Structured version Visualization version GIF version |
Description: A formulation of crefi 31699 easier to use for definitions. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
crefi.x | ⊢ 𝑋 = ∪ 𝐽 |
crefdf.b | ⊢ 𝐵 = CovHasRef𝐴 |
crefdf.p | ⊢ (𝑧 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
crefdf | ⊢ ((𝐽 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ 𝒫 𝐽(𝜑 ∧ 𝑧Ref𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crefdf.b | . . . 4 ⊢ 𝐵 = CovHasRef𝐴 | |
2 | 1 | eleq2i 2830 | . . 3 ⊢ (𝐽 ∈ 𝐵 ↔ 𝐽 ∈ CovHasRef𝐴) |
3 | crefi.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | crefi 31699 | . . 3 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) |
5 | 2, 4 | syl3an1b 1401 | . 2 ⊢ ((𝐽 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) |
6 | elin 3899 | . . . . . 6 ⊢ (𝑧 ∈ (𝒫 𝐽 ∩ 𝐴) ↔ (𝑧 ∈ 𝒫 𝐽 ∧ 𝑧 ∈ 𝐴)) | |
7 | crefdf.p | . . . . . . 7 ⊢ (𝑧 ∈ 𝐴 → 𝜑) | |
8 | 7 | anim2i 616 | . . . . . 6 ⊢ ((𝑧 ∈ 𝒫 𝐽 ∧ 𝑧 ∈ 𝐴) → (𝑧 ∈ 𝒫 𝐽 ∧ 𝜑)) |
9 | 6, 8 | sylbi 216 | . . . . 5 ⊢ (𝑧 ∈ (𝒫 𝐽 ∩ 𝐴) → (𝑧 ∈ 𝒫 𝐽 ∧ 𝜑)) |
10 | 9 | anim1i 614 | . . . 4 ⊢ ((𝑧 ∈ (𝒫 𝐽 ∩ 𝐴) ∧ 𝑧Ref𝐶) → ((𝑧 ∈ 𝒫 𝐽 ∧ 𝜑) ∧ 𝑧Ref𝐶)) |
11 | anass 468 | . . . 4 ⊢ (((𝑧 ∈ 𝒫 𝐽 ∧ 𝜑) ∧ 𝑧Ref𝐶) ↔ (𝑧 ∈ 𝒫 𝐽 ∧ (𝜑 ∧ 𝑧Ref𝐶))) | |
12 | 10, 11 | sylib 217 | . . 3 ⊢ ((𝑧 ∈ (𝒫 𝐽 ∩ 𝐴) ∧ 𝑧Ref𝐶) → (𝑧 ∈ 𝒫 𝐽 ∧ (𝜑 ∧ 𝑧Ref𝐶))) |
13 | 12 | reximi2 3171 | . 2 ⊢ (∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶 → ∃𝑧 ∈ 𝒫 𝐽(𝜑 ∧ 𝑧Ref𝐶)) |
14 | 5, 13 | syl 17 | 1 ⊢ ((𝐽 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ 𝒫 𝐽(𝜑 ∧ 𝑧Ref𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 class class class wbr 5070 Refcref 22561 CovHasRefccref 31694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-cref 31695 |
This theorem is referenced by: cmpfiref 31703 ldlfcntref 31706 |
Copyright terms: Public domain | W3C validator |