Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crefdf Structured version   Visualization version   GIF version

Theorem crefdf 32859
Description: A formulation of crefi 32858 easier to use for definitions. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Hypotheses
Ref Expression
crefi.x 𝑋 = 𝐽
crefdf.b 𝐵 = CovHasRef𝐴
crefdf.p (𝑧𝐴𝜑)
Assertion
Ref Expression
crefdf ((𝐽𝐵𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ 𝒫 𝐽(𝜑𝑧Ref𝐶))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐽   𝑧,𝐶
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝑋(𝑧)

Proof of Theorem crefdf
StepHypRef Expression
1 crefdf.b . . . 4 𝐵 = CovHasRef𝐴
21eleq2i 2826 . . 3 (𝐽𝐵𝐽 ∈ CovHasRef𝐴)
3 crefi.x . . . 4 𝑋 = 𝐽
43crefi 32858 . . 3 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)
52, 4syl3an1b 1404 . 2 ((𝐽𝐵𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)
6 elin 3965 . . . . . 6 (𝑧 ∈ (𝒫 𝐽𝐴) ↔ (𝑧 ∈ 𝒫 𝐽𝑧𝐴))
7 crefdf.p . . . . . . 7 (𝑧𝐴𝜑)
87anim2i 618 . . . . . 6 ((𝑧 ∈ 𝒫 𝐽𝑧𝐴) → (𝑧 ∈ 𝒫 𝐽𝜑))
96, 8sylbi 216 . . . . 5 (𝑧 ∈ (𝒫 𝐽𝐴) → (𝑧 ∈ 𝒫 𝐽𝜑))
109anim1i 616 . . . 4 ((𝑧 ∈ (𝒫 𝐽𝐴) ∧ 𝑧Ref𝐶) → ((𝑧 ∈ 𝒫 𝐽𝜑) ∧ 𝑧Ref𝐶))
11 anass 470 . . . 4 (((𝑧 ∈ 𝒫 𝐽𝜑) ∧ 𝑧Ref𝐶) ↔ (𝑧 ∈ 𝒫 𝐽 ∧ (𝜑𝑧Ref𝐶)))
1210, 11sylib 217 . . 3 ((𝑧 ∈ (𝒫 𝐽𝐴) ∧ 𝑧Ref𝐶) → (𝑧 ∈ 𝒫 𝐽 ∧ (𝜑𝑧Ref𝐶)))
1312reximi2 3080 . 2 (∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶 → ∃𝑧 ∈ 𝒫 𝐽(𝜑𝑧Ref𝐶))
145, 13syl 17 1 ((𝐽𝐵𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ 𝒫 𝐽(𝜑𝑧Ref𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wrex 3071  cin 3948  wss 3949  𝒫 cpw 4603   cuni 4909   class class class wbr 5149  Refcref 23006  CovHasRefccref 32853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-cref 32854
This theorem is referenced by:  cmpfiref  32862  ldlfcntref  32865
  Copyright terms: Public domain W3C validator