Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crefdf Structured version   Visualization version   GIF version

Theorem crefdf 33580
Description: A formulation of crefi 33579 easier to use for definitions. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Hypotheses
Ref Expression
crefi.x 𝑋 = 𝐽
crefdf.b 𝐵 = CovHasRef𝐴
crefdf.p (𝑧𝐴𝜑)
Assertion
Ref Expression
crefdf ((𝐽𝐵𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ 𝒫 𝐽(𝜑𝑧Ref𝐶))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐽   𝑧,𝐶
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝑋(𝑧)

Proof of Theorem crefdf
StepHypRef Expression
1 crefdf.b . . . 4 𝐵 = CovHasRef𝐴
21eleq2i 2817 . . 3 (𝐽𝐵𝐽 ∈ CovHasRef𝐴)
3 crefi.x . . . 4 𝑋 = 𝐽
43crefi 33579 . . 3 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)
52, 4syl3an1b 1400 . 2 ((𝐽𝐵𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)
6 elin 3960 . . . . . 6 (𝑧 ∈ (𝒫 𝐽𝐴) ↔ (𝑧 ∈ 𝒫 𝐽𝑧𝐴))
7 crefdf.p . . . . . . 7 (𝑧𝐴𝜑)
87anim2i 615 . . . . . 6 ((𝑧 ∈ 𝒫 𝐽𝑧𝐴) → (𝑧 ∈ 𝒫 𝐽𝜑))
96, 8sylbi 216 . . . . 5 (𝑧 ∈ (𝒫 𝐽𝐴) → (𝑧 ∈ 𝒫 𝐽𝜑))
109anim1i 613 . . . 4 ((𝑧 ∈ (𝒫 𝐽𝐴) ∧ 𝑧Ref𝐶) → ((𝑧 ∈ 𝒫 𝐽𝜑) ∧ 𝑧Ref𝐶))
11 anass 467 . . . 4 (((𝑧 ∈ 𝒫 𝐽𝜑) ∧ 𝑧Ref𝐶) ↔ (𝑧 ∈ 𝒫 𝐽 ∧ (𝜑𝑧Ref𝐶)))
1210, 11sylib 217 . . 3 ((𝑧 ∈ (𝒫 𝐽𝐴) ∧ 𝑧Ref𝐶) → (𝑧 ∈ 𝒫 𝐽 ∧ (𝜑𝑧Ref𝐶)))
1312reximi2 3068 . 2 (∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶 → ∃𝑧 ∈ 𝒫 𝐽(𝜑𝑧Ref𝐶))
145, 13syl 17 1 ((𝐽𝐵𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ 𝒫 𝐽(𝜑𝑧Ref𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wrex 3059  cin 3943  wss 3944  𝒫 cpw 4604   cuni 4909   class class class wbr 5149  Refcref 23450  CovHasRefccref 33574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-cref 33575
This theorem is referenced by:  cmpfiref  33583  ldlfcntref  33586
  Copyright terms: Public domain W3C validator