Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpoelrn Structured version   Visualization version   GIF version

Theorem ovmpoelrn 7780
 Description: An operation's value belongs to its range. (Contributed by AV, 27-Jan-2020.)
Hypothesis
Ref Expression
ovmpoelrn.o 𝑂 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
ovmpoelrn ((∀𝑥𝐴𝑦𝐵 𝐶𝑀𝑋𝐴𝑌𝐵) → (𝑋𝑂𝑌) ∈ 𝑀)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem ovmpoelrn
StepHypRef Expression
1 ovmpoelrn.o . . 3 𝑂 = (𝑥𝐴, 𝑦𝐵𝐶)
21fmpo 7776 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑀𝑂:(𝐴 × 𝐵)⟶𝑀)
3 fovrn 7320 . 2 ((𝑂:(𝐴 × 𝐵)⟶𝑀𝑋𝐴𝑌𝐵) → (𝑋𝑂𝑌) ∈ 𝑀)
42, 3syl3an1b 1400 1 ((∀𝑥𝐴𝑦𝐵 𝐶𝑀𝑋𝐴𝑌𝐵) → (𝑋𝑂𝑌) ∈ 𝑀)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3070   × cxp 5526  ⟶wf 6336  (class class class)co 7156   ∈ cmpo 7158 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302  ax-un 7465 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7699  df-2nd 7700 This theorem is referenced by:  opifismgm  17948  opmpoismgm  44843
 Copyright terms: Public domain W3C validator