Proof of Theorem divrngcl
Step | Hyp | Ref
| Expression |
1 | | isdivrng1.1 |
. . 3
⊢ 𝐺 = (1st ‘𝑅) |
2 | | isdivrng1.2 |
. . 3
⊢ 𝐻 = (2nd ‘𝑅) |
3 | | isdivrng1.3 |
. . 3
⊢ 𝑍 = (GId‘𝐺) |
4 | | isdivrng1.4 |
. . 3
⊢ 𝑋 = ran 𝐺 |
5 | 1, 2, 3, 4 | isdrngo1 36041 |
. 2
⊢ (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) |
6 | | ovres 7416 |
. . . . 5
⊢ ((𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍})) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) = (𝐴𝐻𝐵)) |
7 | 6 | adantl 481 |
. . . 4
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ (𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍}))) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) = (𝐴𝐻𝐵)) |
8 | | eqid 2738 |
. . . . . . . . 9
⊢ ran
(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
9 | 8 | grpocl 28763 |
. . . . . . . 8
⊢ (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ∧ 𝐴 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∧ 𝐵 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) |
10 | 9 | 3expib 1120 |
. . . . . . 7
⊢ ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → ((𝐴 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∧ 𝐵 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))) |
11 | 10 | adantl 481 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ((𝐴 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∧ 𝐵 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))) |
12 | | grporndm 28773 |
. . . . . . . . . 10
⊢ ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) |
13 | 12 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) |
14 | | difss 4062 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∖ {𝑍}) ⊆ 𝑋 |
15 | | xpss12 5595 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∖ {𝑍}) ⊆ 𝑋 ∧ (𝑋 ∖ {𝑍}) ⊆ 𝑋) → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋)) |
16 | 14, 14, 15 | mp2an 688 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋) |
17 | 1, 2, 4 | rngosm 35985 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋) |
18 | 17 | fdmd 6595 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ RingOps → dom 𝐻 = (𝑋 × 𝑋)) |
19 | 16, 18 | sseqtrrid 3970 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ RingOps → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻) |
20 | | ssdmres 5903 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻 ↔ dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
21 | 19, 20 | sylib 217 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ RingOps → dom
(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
22 | 21 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
23 | 22 | dmeqd 5803 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
24 | | dmxpid 5828 |
. . . . . . . . . 10
⊢ dom
((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) = (𝑋 ∖ {𝑍}) |
25 | 23, 24 | eqtrdi 2795 |
. . . . . . . . 9
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍})) |
26 | 13, 25 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍})) |
27 | 26 | eleq2d 2824 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝐴 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ↔ 𝐴 ∈ (𝑋 ∖ {𝑍}))) |
28 | 26 | eleq2d 2824 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝐵 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ↔ 𝐵 ∈ (𝑋 ∖ {𝑍}))) |
29 | 27, 28 | anbi12d 630 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ((𝐴 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∧ 𝐵 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) ↔ (𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍})))) |
30 | 26 | eleq2d 2824 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ((𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ↔ (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ (𝑋 ∖ {𝑍}))) |
31 | 11, 29, 30 | 3imtr3d 292 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ((𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍})) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ (𝑋 ∖ {𝑍}))) |
32 | 31 | imp 406 |
. . . 4
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ (𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍}))) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ (𝑋 ∖ {𝑍})) |
33 | 7, 32 | eqeltrrd 2840 |
. . 3
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ (𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍}))) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ {𝑍})) |
34 | 33 | 3impb 1113 |
. 2
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍})) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ {𝑍})) |
35 | 5, 34 | syl3an1b 1401 |
1
⊢ ((𝑅 ∈ DivRingOps ∧ 𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍})) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ {𝑍})) |