![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flfneii | Structured version Visualization version GIF version |
Description: A neighborhood of a limit point of a function contains the image of a filter element. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
flfneii.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
flfneii | ⊢ (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flfneii.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | toptopon 22946 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
3 | flfnei 24022 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛))) | |
4 | 2, 3 | syl3an1b 1403 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛))) |
5 | 4 | simplbda 499 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛) |
6 | 5 | 3adant3 1132 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛) |
7 | sseq2 4035 | . . . . 5 ⊢ (𝑛 = 𝑁 → ((𝐹 “ 𝑠) ⊆ 𝑛 ↔ (𝐹 “ 𝑠) ⊆ 𝑁)) | |
8 | 7 | rexbidv 3185 | . . . 4 ⊢ (𝑛 = 𝑁 → (∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛 ↔ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑁)) |
9 | 8 | rspcv 3631 | . . 3 ⊢ (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑁)) |
10 | 9 | 3ad2ant3 1135 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑁)) |
11 | 6, 10 | mpd 15 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 {csn 4648 ∪ cuni 4931 “ cima 5703 ⟶wf 6571 ‘cfv 6575 (class class class)co 7450 Topctop 22922 TopOnctopon 22939 neicnei 23128 Filcfil 23876 fLimf cflf 23966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-map 8888 df-fbas 21386 df-fg 21387 df-top 22923 df-topon 22940 df-nei 23129 df-fil 23877 df-fm 23969 df-flim 23970 df-flf 23971 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |