![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flfneii | Structured version Visualization version GIF version |
Description: A neighborhood of a limit point of a function contains the image of a filter element. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
flfneii.x | β’ π = βͺ π½ |
Ref | Expression |
---|---|
flfneii | β’ (((π½ β Top β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β§ π΄ β ((π½ fLimf πΏ)βπΉ) β§ π β ((neiβπ½)β{π΄})) β βπ β πΏ (πΉ β π ) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flfneii.x | . . . . . 6 β’ π = βͺ π½ | |
2 | 1 | toptopon 22419 | . . . . 5 β’ (π½ β Top β π½ β (TopOnβπ)) |
3 | flfnei 23495 | . . . . 5 β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β (π΄ β ((π½ fLimf πΏ)βπΉ) β (π΄ β π β§ βπ β ((neiβπ½)β{π΄})βπ β πΏ (πΉ β π ) β π))) | |
4 | 2, 3 | syl3an1b 1404 | . . . 4 β’ ((π½ β Top β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β (π΄ β ((π½ fLimf πΏ)βπΉ) β (π΄ β π β§ βπ β ((neiβπ½)β{π΄})βπ β πΏ (πΉ β π ) β π))) |
5 | 4 | simplbda 501 | . . 3 β’ (((π½ β Top β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β§ π΄ β ((π½ fLimf πΏ)βπΉ)) β βπ β ((neiβπ½)β{π΄})βπ β πΏ (πΉ β π ) β π) |
6 | 5 | 3adant3 1133 | . 2 β’ (((π½ β Top β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β§ π΄ β ((π½ fLimf πΏ)βπΉ) β§ π β ((neiβπ½)β{π΄})) β βπ β ((neiβπ½)β{π΄})βπ β πΏ (πΉ β π ) β π) |
7 | sseq2 4009 | . . . . 5 β’ (π = π β ((πΉ β π ) β π β (πΉ β π ) β π)) | |
8 | 7 | rexbidv 3179 | . . . 4 β’ (π = π β (βπ β πΏ (πΉ β π ) β π β βπ β πΏ (πΉ β π ) β π)) |
9 | 8 | rspcv 3609 | . . 3 β’ (π β ((neiβπ½)β{π΄}) β (βπ β ((neiβπ½)β{π΄})βπ β πΏ (πΉ β π ) β π β βπ β πΏ (πΉ β π ) β π)) |
10 | 9 | 3ad2ant3 1136 | . 2 β’ (((π½ β Top β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β§ π΄ β ((π½ fLimf πΏ)βπΉ) β§ π β ((neiβπ½)β{π΄})) β (βπ β ((neiβπ½)β{π΄})βπ β πΏ (πΉ β π ) β π β βπ β πΏ (πΉ β π ) β π)) |
11 | 6, 10 | mpd 15 | 1 β’ (((π½ β Top β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β§ π΄ β ((π½ fLimf πΏ)βπΉ) β§ π β ((neiβπ½)β{π΄})) β βπ β πΏ (πΉ β π ) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 βwral 3062 βwrex 3071 β wss 3949 {csn 4629 βͺ cuni 4909 β cima 5680 βΆwf 6540 βcfv 6544 (class class class)co 7409 Topctop 22395 TopOnctopon 22412 neicnei 22601 Filcfil 23349 fLimf cflf 23439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-map 8822 df-fbas 20941 df-fg 20942 df-top 22396 df-topon 22413 df-nei 22602 df-fil 23350 df-fm 23442 df-flim 23443 df-flf 23444 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |