| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > flfneii | Structured version Visualization version GIF version | ||
| Description: A neighborhood of a limit point of a function contains the image of a filter element. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| flfneii.x | ⊢ 𝑋 = ∪ 𝐽 | 
| Ref | Expression | 
|---|---|
| flfneii | ⊢ (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑁) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | flfneii.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | toptopon 22870 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) | 
| 3 | flfnei 23944 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛))) | |
| 4 | 2, 3 | syl3an1b 1404 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛))) | 
| 5 | 4 | simplbda 499 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛) | 
| 6 | 5 | 3adant3 1132 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛) | 
| 7 | sseq2 3990 | . . . . 5 ⊢ (𝑛 = 𝑁 → ((𝐹 “ 𝑠) ⊆ 𝑛 ↔ (𝐹 “ 𝑠) ⊆ 𝑁)) | |
| 8 | 7 | rexbidv 3166 | . . . 4 ⊢ (𝑛 = 𝑁 → (∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛 ↔ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑁)) | 
| 9 | 8 | rspcv 3601 | . . 3 ⊢ (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑁)) | 
| 10 | 9 | 3ad2ant3 1135 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑁)) | 
| 11 | 6, 10 | mpd 15 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑁) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ⊆ wss 3931 {csn 4606 ∪ cuni 4887 “ cima 5668 ⟶wf 6536 ‘cfv 6540 (class class class)co 7412 Topctop 22846 TopOnctopon 22863 neicnei 23050 Filcfil 23798 fLimf cflf 23888 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8849 df-fbas 21322 df-fg 21323 df-top 22847 df-topon 22864 df-nei 23051 df-fil 23799 df-fm 23891 df-flim 23892 df-flf 23893 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |