MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfneii Structured version   Visualization version   GIF version

Theorem flfneii 24023
Description: A neighborhood of a limit point of a function contains the image of a filter element. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flfneii.x 𝑋 = 𝐽
Assertion
Ref Expression
flfneii (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑁)
Distinct variable groups:   𝐹,𝑠   𝐽,𝑠   𝐿,𝑠   𝑁,𝑠   𝑋,𝑠   𝑌,𝑠
Allowed substitution hint:   𝐴(𝑠)

Proof of Theorem flfneii
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 flfneii.x . . . . . 6 𝑋 = 𝐽
21toptopon 22946 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3 flfnei 24022 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
42, 3syl3an1b 1403 . . . 4 ((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
54simplbda 499 . . 3 (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)
653adant3 1132 . 2 (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)
7 sseq2 4035 . . . . 5 (𝑛 = 𝑁 → ((𝐹𝑠) ⊆ 𝑛 ↔ (𝐹𝑠) ⊆ 𝑁))
87rexbidv 3185 . . . 4 (𝑛 = 𝑁 → (∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛 ↔ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑁))
98rspcv 3631 . . 3 (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑁))
1093ad2ant3 1135 . 2 (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑁))
116, 10mpd 15 1 (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976  {csn 4648   cuni 4931  cima 5703  wf 6571  cfv 6575  (class class class)co 7450  Topctop 22922  TopOnctopon 22939  neicnei 23128  Filcfil 23876   fLimf cflf 23966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-map 8888  df-fbas 21386  df-fg 21387  df-top 22923  df-topon 22940  df-nei 23129  df-fil 23877  df-fm 23969  df-flim 23970  df-flf 23971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator