Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfneii Structured version   Visualization version   GIF version

Theorem flfneii 22692
 Description: A neighborhood of a limit point of a function contains the image of a filter element. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flfneii.x 𝑋 = 𝐽
Assertion
Ref Expression
flfneii (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑁)
Distinct variable groups:   𝐹,𝑠   𝐽,𝑠   𝐿,𝑠   𝑁,𝑠   𝑋,𝑠   𝑌,𝑠
Allowed substitution hint:   𝐴(𝑠)

Proof of Theorem flfneii
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 flfneii.x . . . . . 6 𝑋 = 𝐽
21toptopon 21617 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3 flfnei 22691 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
42, 3syl3an1b 1400 . . . 4 ((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
54simplbda 503 . . 3 (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)
653adant3 1129 . 2 (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)
7 sseq2 3918 . . . . 5 (𝑛 = 𝑁 → ((𝐹𝑠) ⊆ 𝑛 ↔ (𝐹𝑠) ⊆ 𝑁))
87rexbidv 3221 . . . 4 (𝑛 = 𝑁 → (∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛 ↔ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑁))
98rspcv 3536 . . 3 (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑁))
1093ad2ant3 1132 . 2 (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑁))
116, 10mpd 15 1 (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑁)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3070  ∃wrex 3071   ⊆ wss 3858  {csn 4522  ∪ cuni 4798   “ cima 5527  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150  Topctop 21593  TopOnctopon 21610  neicnei 21797  Filcfil 22545   fLimf cflf 22635 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8418  df-fbas 20163  df-fg 20164  df-top 21594  df-topon 21611  df-nei 21798  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator