| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flfneii | Structured version Visualization version GIF version | ||
| Description: A neighborhood of a limit point of a function contains the image of a filter element. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
| Ref | Expression |
|---|---|
| flfneii.x | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| flfneii | ⊢ (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flfneii.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | toptopon 22802 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 3 | flfnei 23876 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛))) | |
| 4 | 2, 3 | syl3an1b 1405 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛))) |
| 5 | 4 | simplbda 499 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛) |
| 6 | 5 | 3adant3 1132 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛) |
| 7 | sseq2 3962 | . . . . 5 ⊢ (𝑛 = 𝑁 → ((𝐹 “ 𝑠) ⊆ 𝑛 ↔ (𝐹 “ 𝑠) ⊆ 𝑁)) | |
| 8 | 7 | rexbidv 3153 | . . . 4 ⊢ (𝑛 = 𝑁 → (∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛 ↔ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑁)) |
| 9 | 8 | rspcv 3573 | . . 3 ⊢ (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑁)) |
| 10 | 9 | 3ad2ant3 1135 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑁)) |
| 11 | 6, 10 | mpd 15 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3903 {csn 4577 ∪ cuni 4858 “ cima 5622 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 Topctop 22778 TopOnctopon 22795 neicnei 22982 Filcfil 23730 fLimf cflf 23820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-fbas 21258 df-fg 21259 df-top 22779 df-topon 22796 df-nei 22983 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |