Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an2b Structured version   Visualization version   GIF version

Theorem syl3an2b 1401
 Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an2b.1 (𝜑𝜒)
syl3an2b.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an2b ((𝜓𝜑𝜃) → 𝜏)

Proof of Theorem syl3an2b
StepHypRef Expression
1 syl3an2b.1 . . 3 (𝜑𝜒)
21biimpi 219 . 2 (𝜑𝜒)
3 syl3an2b.2 . 2 ((𝜓𝜒𝜃) → 𝜏)
42, 3syl3an2 1161 1 ((𝜓𝜑𝜃) → 𝜏)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ w3a 1084 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086 This theorem is referenced by:  omlimcl  8189  cflim2  9676  isdrngd  19523  rintopn  21521  cmpcld  22014  funvtxval0  26815  cusgr0v  27225  2clwwlk2clwwlklem  28138  cgrcomlr  33584  dissneqlem  34773  pmapglb  37082
 Copyright terms: Public domain W3C validator