Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  padct Structured version   Visualization version   GIF version

Theorem padct 32662
Description: Index a countable set with integers and pad with 𝑍. (Contributed by Thierry Arnoux, 1-Jun-2020.)
Assertion
Ref Expression
padct ((𝐴 ≼ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
Distinct variable groups:   𝐴,𝑓   𝑓,𝑉   𝑓,𝑍

Proof of Theorem padct
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdom2 8907 . 2 (𝐴 ≼ ω ↔ (𝐴 ≺ ω ∨ 𝐴 ≈ ω))
2 nfv 1914 . . . . . 6 𝑔(𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴)
3 nfv 1914 . . . . . 6 𝑔𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))
4 isfinite2 9187 . . . . . . . . . 10 (𝐴 ≺ ω → 𝐴 ∈ Fin)
5 isfinite4 14269 . . . . . . . . . 10 (𝐴 ∈ Fin ↔ (1...(♯‘𝐴)) ≈ 𝐴)
64, 5sylib 218 . . . . . . . . 9 (𝐴 ≺ ω → (1...(♯‘𝐴)) ≈ 𝐴)
76adantr 480 . . . . . . . 8 ((𝐴 ≺ ω ∧ 𝑍𝑉) → (1...(♯‘𝐴)) ≈ 𝐴)
8 bren 8882 . . . . . . . 8 ((1...(♯‘𝐴)) ≈ 𝐴 ↔ ∃𝑔 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴)
97, 8sylib 218 . . . . . . 7 ((𝐴 ≺ ω ∧ 𝑍𝑉) → ∃𝑔 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴)
1093adant3 1132 . . . . . 6 ((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑔 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴)
11 f1of 6764 . . . . . . . . . . . 12 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴𝑔:(1...(♯‘𝐴))⟶𝐴)
1211adantl 481 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑔:(1...(♯‘𝐴))⟶𝐴)
13 fconstmpt 5681 . . . . . . . . . . . . 13 ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍}) = (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)
1413eqcomi 2738 . . . . . . . . . . . 12 (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍})
15 simplr 768 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑍𝑉)
16 fconst2g 7139 . . . . . . . . . . . . 13 (𝑍𝑉 → ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(♯‘𝐴)))⟶{𝑍} ↔ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍})))
1715, 16syl 17 . . . . . . . . . . . 12 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(♯‘𝐴)))⟶{𝑍} ↔ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍})))
1814, 17mpbiri 258 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(♯‘𝐴)))⟶{𝑍})
19 disjdif 4423 . . . . . . . . . . . 12 ((1...(♯‘𝐴)) ∩ (ℕ ∖ (1...(♯‘𝐴)))) = ∅
2019a1i 11 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((1...(♯‘𝐴)) ∩ (ℕ ∖ (1...(♯‘𝐴)))) = ∅)
21 fun 6686 . . . . . . . . . . 11 (((𝑔:(1...(♯‘𝐴))⟶𝐴 ∧ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(♯‘𝐴)))⟶{𝑍}) ∧ ((1...(♯‘𝐴)) ∩ (ℕ ∖ (1...(♯‘𝐴)))) = ∅) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴))))⟶(𝐴 ∪ {𝑍}))
2212, 18, 20, 21syl21anc 837 . . . . . . . . . 10 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴))))⟶(𝐴 ∪ {𝑍}))
23 fz1ssnn 13458 . . . . . . . . . . . 12 (1...(♯‘𝐴)) ⊆ ℕ
24 undif 4433 . . . . . . . . . . . 12 ((1...(♯‘𝐴)) ⊆ ℕ ↔ ((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴)))) = ℕ)
2523, 24mpbi 230 . . . . . . . . . . 11 ((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴)))) = ℕ
2625feq2i 6644 . . . . . . . . . 10 ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴))))⟶(𝐴 ∪ {𝑍}) ↔ (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}))
2722, 26sylib 218 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}))
28273adantl3 1169 . . . . . . . 8 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}))
29 ssid 3958 . . . . . . . . . . . . 13 𝐴𝐴
30 simpr 484 . . . . . . . . . . . . . 14 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴)
31 f1ofo 6771 . . . . . . . . . . . . . 14 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴𝑔:(1...(♯‘𝐴))–onto𝐴)
32 forn 6739 . . . . . . . . . . . . . 14 (𝑔:(1...(♯‘𝐴))–onto𝐴 → ran 𝑔 = 𝐴)
3330, 31, 323syl 18 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ran 𝑔 = 𝐴)
3429, 33sseqtrrid 3979 . . . . . . . . . . . 12 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ ran 𝑔)
3534orcd 873 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝐴 ⊆ ran 𝑔𝐴 ⊆ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
36 ssun 4146 . . . . . . . . . . 11 ((𝐴 ⊆ ran 𝑔𝐴 ⊆ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → 𝐴 ⊆ (ran 𝑔 ∪ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
3735, 36syl 17 . . . . . . . . . 10 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ (ran 𝑔 ∪ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
38 rnun 6094 . . . . . . . . . 10 ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) = (ran 𝑔 ∪ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍))
3937, 38sseqtrrdi 3977 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
40393adantl3 1169 . . . . . . . 8 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
41 dff1o3 6770 . . . . . . . . . . 11 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 ↔ (𝑔:(1...(♯‘𝐴))–onto𝐴 ∧ Fun 𝑔))
4241simprbi 496 . . . . . . . . . 10 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 → Fun 𝑔)
4342adantl 481 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → Fun 𝑔)
44 cnvun 6091 . . . . . . . . . . . . 13 (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) = (𝑔(𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍))
4544reseq1i 5926 . . . . . . . . . . . 12 ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = ((𝑔(𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴)
46 resundir 5945 . . . . . . . . . . . 12 ((𝑔(𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴))
4745, 46eqtri 2752 . . . . . . . . . . 11 ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴))
48 dff1o4 6772 . . . . . . . . . . . . . . . 16 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 ↔ (𝑔 Fn (1...(♯‘𝐴)) ∧ 𝑔 Fn 𝐴))
4948simprbi 496 . . . . . . . . . . . . . . 15 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴𝑔 Fn 𝐴)
50 fnresdm 6601 . . . . . . . . . . . . . . 15 (𝑔 Fn 𝐴 → (𝑔𝐴) = 𝑔)
5149, 50syl 17 . . . . . . . . . . . . . 14 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝑔𝐴) = 𝑔)
5251adantl 481 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑔𝐴) = 𝑔)
53 simpl3 1194 . . . . . . . . . . . . . 14 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ¬ 𝑍𝐴)
5414cnveqi 5817 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍})
55 cnvxp 6106 . . . . . . . . . . . . . . . . 17 ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍}) = ({𝑍} × (ℕ ∖ (1...(♯‘𝐴))))
5654, 55eqtri 2752 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ({𝑍} × (ℕ ∖ (1...(♯‘𝐴))))
5756reseq1i 5926 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴) = (({𝑍} × (ℕ ∖ (1...(♯‘𝐴)))) ↾ 𝐴)
58 incom 4160 . . . . . . . . . . . . . . . . 17 (𝐴 ∩ {𝑍}) = ({𝑍} ∩ 𝐴)
59 disjsn 4663 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∩ {𝑍}) = ∅ ↔ ¬ 𝑍𝐴)
6059biimpri 228 . . . . . . . . . . . . . . . . 17 𝑍𝐴 → (𝐴 ∩ {𝑍}) = ∅)
6158, 60eqtr3id 2778 . . . . . . . . . . . . . . . 16 𝑍𝐴 → ({𝑍} ∩ 𝐴) = ∅)
62 xpdisjres 32542 . . . . . . . . . . . . . . . 16 (({𝑍} ∩ 𝐴) = ∅ → (({𝑍} × (ℕ ∖ (1...(♯‘𝐴)))) ↾ 𝐴) = ∅)
6361, 62syl 17 . . . . . . . . . . . . . . 15 𝑍𝐴 → (({𝑍} × (ℕ ∖ (1...(♯‘𝐴)))) ↾ 𝐴) = ∅)
6457, 63eqtrid 2776 . . . . . . . . . . . . . 14 𝑍𝐴 → ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴) = ∅)
6553, 64syl 17 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴) = ∅)
6652, 65uneq12d 4120 . . . . . . . . . . . 12 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴)) = (𝑔 ∪ ∅))
67 un0 4345 . . . . . . . . . . . 12 (𝑔 ∪ ∅) = 𝑔
6866, 67eqtrdi 2780 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴)) = 𝑔)
6947, 68eqtrid 2776 . . . . . . . . . 10 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = 𝑔)
7069funeqd 6504 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) ↔ Fun 𝑔))
7143, 70mpbird 257 . . . . . . . 8 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴))
72 vex 3440 . . . . . . . . . 10 𝑔 ∈ V
73 nnex 12134 . . . . . . . . . . . 12 ℕ ∈ V
74 difexg 5268 . . . . . . . . . . . 12 (ℕ ∈ V → (ℕ ∖ (1...(♯‘𝐴))) ∈ V)
7573, 74ax-mp 5 . . . . . . . . . . 11 (ℕ ∖ (1...(♯‘𝐴))) ∈ V
7675mptex 7159 . . . . . . . . . 10 (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ∈ V
7772, 76unex 7680 . . . . . . . . 9 (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ∈ V
78 feq1 6630 . . . . . . . . . 10 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → (𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ↔ (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍})))
79 rneq 5878 . . . . . . . . . . 11 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → ran 𝑓 = ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
8079sseq2d 3968 . . . . . . . . . 10 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → (𝐴 ⊆ ran 𝑓𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍))))
81 cnveq 5816 . . . . . . . . . . . 12 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → 𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
82 eqidd 2730 . . . . . . . . . . . 12 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → 𝐴 = 𝐴)
8381, 82reseq12d 5931 . . . . . . . . . . 11 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → (𝑓𝐴) = ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴))
8483funeqd 6504 . . . . . . . . . 10 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → (Fun (𝑓𝐴) ↔ Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴)))
8578, 80, 843anbi123d 1438 . . . . . . . . 9 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → ((𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)) ↔ ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ∧ Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴))))
8677, 85spcev 3561 . . . . . . . 8 (((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ∧ Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴)) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
8728, 40, 71, 86syl3anc 1373 . . . . . . 7 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
8887ex 412 . . . . . 6 ((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
892, 3, 10, 88exlimimdd 2220 . . . . 5 ((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
90893expia 1121 . . . 4 ((𝐴 ≺ ω ∧ 𝑍𝑉) → (¬ 𝑍𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
91 nnenom 13887 . . . . . . . 8 ℕ ≈ ω
92 simpl 482 . . . . . . . . 9 ((𝐴 ≈ ω ∧ 𝑍𝑉) → 𝐴 ≈ ω)
9392ensymd 8930 . . . . . . . 8 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ω ≈ 𝐴)
94 entr 8931 . . . . . . . 8 ((ℕ ≈ ω ∧ ω ≈ 𝐴) → ℕ ≈ 𝐴)
9591, 93, 94sylancr 587 . . . . . . 7 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ℕ ≈ 𝐴)
96 bren 8882 . . . . . . 7 (ℕ ≈ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
9795, 96sylib 218 . . . . . 6 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
98 nfv 1914 . . . . . . 7 𝑓(𝐴 ≈ ω ∧ 𝑍𝑉)
99 simpr 484 . . . . . . . . . 10 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ–1-1-onto𝐴)
100 f1of 6764 . . . . . . . . . 10 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ⟶𝐴)
101 ssun1 4129 . . . . . . . . . . 11 𝐴 ⊆ (𝐴 ∪ {𝑍})
102 fss 6668 . . . . . . . . . . 11 ((𝑓:ℕ⟶𝐴𝐴 ⊆ (𝐴 ∪ {𝑍})) → 𝑓:ℕ⟶(𝐴 ∪ {𝑍}))
103101, 102mpan2 691 . . . . . . . . . 10 (𝑓:ℕ⟶𝐴𝑓:ℕ⟶(𝐴 ∪ {𝑍}))
10499, 100, 1033syl 18 . . . . . . . . 9 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ⟶(𝐴 ∪ {𝑍}))
105 f1ofo 6771 . . . . . . . . . . 11 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ–onto𝐴)
106 forn 6739 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 → ran 𝑓 = 𝐴)
10799, 105, 1063syl 18 . . . . . . . . . 10 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → ran 𝑓 = 𝐴)
10829, 107sseqtrrid 3979 . . . . . . . . 9 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝐴 ⊆ ran 𝑓)
109 f1ocnv 6776 . . . . . . . . . . 11 (𝑓:ℕ–1-1-onto𝐴𝑓:𝐴1-1-onto→ℕ)
110 f1of1 6763 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto→ℕ → 𝑓:𝐴1-1→ℕ)
11199, 109, 1103syl 18 . . . . . . . . . 10 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:𝐴1-1→ℕ)
112 f1ores 6778 . . . . . . . . . . 11 ((𝑓:𝐴1-1→ℕ ∧ 𝐴𝐴) → (𝑓𝐴):𝐴1-1-onto→(𝑓𝐴))
11329, 112mpan2 691 . . . . . . . . . 10 (𝑓:𝐴1-1→ℕ → (𝑓𝐴):𝐴1-1-onto→(𝑓𝐴))
114 f1ofun 6766 . . . . . . . . . 10 ((𝑓𝐴):𝐴1-1-onto→(𝑓𝐴) → Fun (𝑓𝐴))
115111, 113, 1143syl 18 . . . . . . . . 9 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → Fun (𝑓𝐴))
116104, 108, 1153jca 1128 . . . . . . . 8 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
117116ex 412 . . . . . . 7 ((𝐴 ≈ ω ∧ 𝑍𝑉) → (𝑓:ℕ–1-1-onto𝐴 → (𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
11898, 117eximd 2217 . . . . . 6 ((𝐴 ≈ ω ∧ 𝑍𝑉) → (∃𝑓 𝑓:ℕ–1-1-onto𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
11997, 118mpd 15 . . . . 5 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
120119a1d 25 . . . 4 ((𝐴 ≈ ω ∧ 𝑍𝑉) → (¬ 𝑍𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
12190, 120jaoian 958 . . 3 (((𝐴 ≺ ω ∨ 𝐴 ≈ ω) ∧ 𝑍𝑉) → (¬ 𝑍𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
1221213impia 1117 . 2 (((𝐴 ≺ ω ∨ 𝐴 ≈ ω) ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
1231, 122syl3an1b 1405 1 ((𝐴 ≼ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  Vcvv 3436  cdif 3900  cun 3901  cin 3902  wss 3903  c0 4284  {csn 4577   class class class wbr 5092  cmpt 5173   × cxp 5617  ccnv 5618  ran crn 5620  cres 5621  cima 5622  Fun wfun 6476   Fn wfn 6477  wf 6478  1-1wf1 6479  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  ωcom 7799  cen 8869  cdom 8870  csdm 8871  Fincfn 8872  1c1 11010  cn 12128  ...cfz 13410  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238
This theorem is referenced by:  carsggect  34286
  Copyright terms: Public domain W3C validator