Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  padct Structured version   Visualization version   GIF version

Theorem padct 29818
Description: Index a countable set with integers and pad with 𝑍. (Contributed by Thierry Arnoux, 1-Jun-2020.)
Assertion
Ref Expression
padct ((𝐴 ≼ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
Distinct variable groups:   𝐴,𝑓   𝑓,𝑉   𝑓,𝑍

Proof of Theorem padct
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdom2 8216 . 2 (𝐴 ≼ ω ↔ (𝐴 ≺ ω ∨ 𝐴 ≈ ω))
2 nfv 2005 . . . . . 6 𝑔(𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴)
3 nfv 2005 . . . . . 6 𝑔𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))
4 isfinite2 8451 . . . . . . . . . 10 (𝐴 ≺ ω → 𝐴 ∈ Fin)
5 isfinite4 13365 . . . . . . . . . 10 (𝐴 ∈ Fin ↔ (1...(♯‘𝐴)) ≈ 𝐴)
64, 5sylib 209 . . . . . . . . 9 (𝐴 ≺ ω → (1...(♯‘𝐴)) ≈ 𝐴)
76adantr 468 . . . . . . . 8 ((𝐴 ≺ ω ∧ 𝑍𝑉) → (1...(♯‘𝐴)) ≈ 𝐴)
8 bren 8195 . . . . . . . 8 ((1...(♯‘𝐴)) ≈ 𝐴 ↔ ∃𝑔 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴)
97, 8sylib 209 . . . . . . 7 ((𝐴 ≺ ω ∧ 𝑍𝑉) → ∃𝑔 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴)
1093adant3 1155 . . . . . 6 ((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑔 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴)
11 f1of 6347 . . . . . . . . . . . 12 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴𝑔:(1...(♯‘𝐴))⟶𝐴)
1211adantl 469 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑔:(1...(♯‘𝐴))⟶𝐴)
13 fconstmpt 5357 . . . . . . . . . . . . 13 ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍}) = (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)
1413eqcomi 2811 . . . . . . . . . . . 12 (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍})
15 simplr 776 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑍𝑉)
16 fconst2g 6687 . . . . . . . . . . . . 13 (𝑍𝑉 → ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(♯‘𝐴)))⟶{𝑍} ↔ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍})))
1715, 16syl 17 . . . . . . . . . . . 12 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(♯‘𝐴)))⟶{𝑍} ↔ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍})))
1814, 17mpbiri 249 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(♯‘𝐴)))⟶{𝑍})
19 disjdif 4230 . . . . . . . . . . . 12 ((1...(♯‘𝐴)) ∩ (ℕ ∖ (1...(♯‘𝐴)))) = ∅
2019a1i 11 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((1...(♯‘𝐴)) ∩ (ℕ ∖ (1...(♯‘𝐴)))) = ∅)
21 fun 6275 . . . . . . . . . . 11 (((𝑔:(1...(♯‘𝐴))⟶𝐴 ∧ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(♯‘𝐴)))⟶{𝑍}) ∧ ((1...(♯‘𝐴)) ∩ (ℕ ∖ (1...(♯‘𝐴)))) = ∅) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴))))⟶(𝐴 ∪ {𝑍}))
2212, 18, 20, 21syl21anc 857 . . . . . . . . . 10 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴))))⟶(𝐴 ∪ {𝑍}))
23 fz1ssnn 12589 . . . . . . . . . . . 12 (1...(♯‘𝐴)) ⊆ ℕ
24 undif 4239 . . . . . . . . . . . 12 ((1...(♯‘𝐴)) ⊆ ℕ ↔ ((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴)))) = ℕ)
2523, 24mpbi 221 . . . . . . . . . . 11 ((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴)))) = ℕ
2625feq2i 6242 . . . . . . . . . 10 ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴))))⟶(𝐴 ∪ {𝑍}) ↔ (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}))
2722, 26sylib 209 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}))
28273adantl3 1202 . . . . . . . 8 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}))
29 ssid 3814 . . . . . . . . . . . . 13 𝐴𝐴
30 simpr 473 . . . . . . . . . . . . . 14 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴)
31 f1ofo 6354 . . . . . . . . . . . . . 14 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴𝑔:(1...(♯‘𝐴))–onto𝐴)
32 forn 6328 . . . . . . . . . . . . . 14 (𝑔:(1...(♯‘𝐴))–onto𝐴 → ran 𝑔 = 𝐴)
3330, 31, 323syl 18 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ran 𝑔 = 𝐴)
3429, 33syl5sseqr 3845 . . . . . . . . . . . 12 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ ran 𝑔)
3534orcd 891 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝐴 ⊆ ran 𝑔𝐴 ⊆ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
36 ssun 3985 . . . . . . . . . . 11 ((𝐴 ⊆ ran 𝑔𝐴 ⊆ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → 𝐴 ⊆ (ran 𝑔 ∪ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
3735, 36syl 17 . . . . . . . . . 10 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ (ran 𝑔 ∪ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
38 rnun 5746 . . . . . . . . . 10 ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) = (ran 𝑔 ∪ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍))
3937, 38syl6sseqr 3843 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
40393adantl3 1202 . . . . . . . 8 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
41 dff1o3 6353 . . . . . . . . . . 11 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 ↔ (𝑔:(1...(♯‘𝐴))–onto𝐴 ∧ Fun 𝑔))
4241simprbi 486 . . . . . . . . . 10 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 → Fun 𝑔)
4342adantl 469 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → Fun 𝑔)
44 cnvun 5743 . . . . . . . . . . . . 13 (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) = (𝑔(𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍))
4544reseq1i 5587 . . . . . . . . . . . 12 ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = ((𝑔(𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴)
46 resundir 5609 . . . . . . . . . . . 12 ((𝑔(𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴))
4745, 46eqtri 2824 . . . . . . . . . . 11 ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴))
48 dff1o4 6355 . . . . . . . . . . . . . . . 16 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 ↔ (𝑔 Fn (1...(♯‘𝐴)) ∧ 𝑔 Fn 𝐴))
4948simprbi 486 . . . . . . . . . . . . . . 15 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴𝑔 Fn 𝐴)
50 fnresdm 6205 . . . . . . . . . . . . . . 15 (𝑔 Fn 𝐴 → (𝑔𝐴) = 𝑔)
5149, 50syl 17 . . . . . . . . . . . . . 14 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝑔𝐴) = 𝑔)
5251adantl 469 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑔𝐴) = 𝑔)
53 simpl3 1239 . . . . . . . . . . . . . 14 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ¬ 𝑍𝐴)
5414cnveqi 5492 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍})
55 cnvxp 5756 . . . . . . . . . . . . . . . . 17 ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍}) = ({𝑍} × (ℕ ∖ (1...(♯‘𝐴))))
5654, 55eqtri 2824 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ({𝑍} × (ℕ ∖ (1...(♯‘𝐴))))
5756reseq1i 5587 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴) = (({𝑍} × (ℕ ∖ (1...(♯‘𝐴)))) ↾ 𝐴)
58 incom 3998 . . . . . . . . . . . . . . . . 17 (𝐴 ∩ {𝑍}) = ({𝑍} ∩ 𝐴)
59 disjsn 4432 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∩ {𝑍}) = ∅ ↔ ¬ 𝑍𝐴)
6059biimpri 219 . . . . . . . . . . . . . . . . 17 𝑍𝐴 → (𝐴 ∩ {𝑍}) = ∅)
6158, 60syl5eqr 2850 . . . . . . . . . . . . . . . 16 𝑍𝐴 → ({𝑍} ∩ 𝐴) = ∅)
62 xpdisjres 29730 . . . . . . . . . . . . . . . 16 (({𝑍} ∩ 𝐴) = ∅ → (({𝑍} × (ℕ ∖ (1...(♯‘𝐴)))) ↾ 𝐴) = ∅)
6361, 62syl 17 . . . . . . . . . . . . . . 15 𝑍𝐴 → (({𝑍} × (ℕ ∖ (1...(♯‘𝐴)))) ↾ 𝐴) = ∅)
6457, 63syl5eq 2848 . . . . . . . . . . . . . 14 𝑍𝐴 → ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴) = ∅)
6553, 64syl 17 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴) = ∅)
6652, 65uneq12d 3961 . . . . . . . . . . . 12 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴)) = (𝑔 ∪ ∅))
67 un0 4159 . . . . . . . . . . . 12 (𝑔 ∪ ∅) = 𝑔
6866, 67syl6eq 2852 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴)) = 𝑔)
6947, 68syl5eq 2848 . . . . . . . . . 10 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = 𝑔)
7069funeqd 6117 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) ↔ Fun 𝑔))
7143, 70mpbird 248 . . . . . . . 8 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴))
72 vex 3390 . . . . . . . . . 10 𝑔 ∈ V
73 nnex 11305 . . . . . . . . . . . 12 ℕ ∈ V
74 difexg 4997 . . . . . . . . . . . 12 (ℕ ∈ V → (ℕ ∖ (1...(♯‘𝐴))) ∈ V)
7573, 74ax-mp 5 . . . . . . . . . . 11 (ℕ ∖ (1...(♯‘𝐴))) ∈ V
7675mptex 6705 . . . . . . . . . 10 (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ∈ V
7772, 76unex 7180 . . . . . . . . 9 (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ∈ V
78 feq1 6231 . . . . . . . . . 10 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → (𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ↔ (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍})))
79 rneq 5546 . . . . . . . . . . 11 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → ran 𝑓 = ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
8079sseq2d 3824 . . . . . . . . . 10 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → (𝐴 ⊆ ran 𝑓𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍))))
81 cnveq 5491 . . . . . . . . . . . 12 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → 𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
82 eqidd 2803 . . . . . . . . . . . 12 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → 𝐴 = 𝐴)
8381, 82reseq12d 5592 . . . . . . . . . . 11 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → (𝑓𝐴) = ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴))
8483funeqd 6117 . . . . . . . . . 10 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → (Fun (𝑓𝐴) ↔ Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴)))
8578, 80, 843anbi123d 1553 . . . . . . . . 9 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → ((𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)) ↔ ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ∧ Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴))))
8677, 85spcev 3489 . . . . . . . 8 (((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ∧ Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴)) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
8728, 40, 71, 86syl3anc 1483 . . . . . . 7 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
8887ex 399 . . . . . 6 ((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
892, 3, 10, 88exlimimdd 2255 . . . . 5 ((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
90893expia 1143 . . . 4 ((𝐴 ≺ ω ∧ 𝑍𝑉) → (¬ 𝑍𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
91 nnenom 12997 . . . . . . . 8 ℕ ≈ ω
92 simpl 470 . . . . . . . . 9 ((𝐴 ≈ ω ∧ 𝑍𝑉) → 𝐴 ≈ ω)
9392ensymd 8237 . . . . . . . 8 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ω ≈ 𝐴)
94 entr 8238 . . . . . . . 8 ((ℕ ≈ ω ∧ ω ≈ 𝐴) → ℕ ≈ 𝐴)
9591, 93, 94sylancr 577 . . . . . . 7 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ℕ ≈ 𝐴)
96 bren 8195 . . . . . . 7 (ℕ ≈ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
9795, 96sylib 209 . . . . . 6 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
98 nfv 2005 . . . . . . 7 𝑓(𝐴 ≈ ω ∧ 𝑍𝑉)
99 simpr 473 . . . . . . . . . 10 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ–1-1-onto𝐴)
100 f1of 6347 . . . . . . . . . 10 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ⟶𝐴)
101 ssun1 3969 . . . . . . . . . . 11 𝐴 ⊆ (𝐴 ∪ {𝑍})
102 fss 6263 . . . . . . . . . . 11 ((𝑓:ℕ⟶𝐴𝐴 ⊆ (𝐴 ∪ {𝑍})) → 𝑓:ℕ⟶(𝐴 ∪ {𝑍}))
103101, 102mpan2 674 . . . . . . . . . 10 (𝑓:ℕ⟶𝐴𝑓:ℕ⟶(𝐴 ∪ {𝑍}))
10499, 100, 1033syl 18 . . . . . . . . 9 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ⟶(𝐴 ∪ {𝑍}))
105 f1ofo 6354 . . . . . . . . . . 11 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ–onto𝐴)
106 forn 6328 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 → ran 𝑓 = 𝐴)
10799, 105, 1063syl 18 . . . . . . . . . 10 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → ran 𝑓 = 𝐴)
10829, 107syl5sseqr 3845 . . . . . . . . 9 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝐴 ⊆ ran 𝑓)
109 f1ocnv 6359 . . . . . . . . . . 11 (𝑓:ℕ–1-1-onto𝐴𝑓:𝐴1-1-onto→ℕ)
110 f1of1 6346 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto→ℕ → 𝑓:𝐴1-1→ℕ)
11199, 109, 1103syl 18 . . . . . . . . . 10 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:𝐴1-1→ℕ)
112 f1ores 6361 . . . . . . . . . . 11 ((𝑓:𝐴1-1→ℕ ∧ 𝐴𝐴) → (𝑓𝐴):𝐴1-1-onto→(𝑓𝐴))
11329, 112mpan2 674 . . . . . . . . . 10 (𝑓:𝐴1-1→ℕ → (𝑓𝐴):𝐴1-1-onto→(𝑓𝐴))
114 f1ofun 6349 . . . . . . . . . 10 ((𝑓𝐴):𝐴1-1-onto→(𝑓𝐴) → Fun (𝑓𝐴))
115111, 113, 1143syl 18 . . . . . . . . 9 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → Fun (𝑓𝐴))
116104, 108, 1153jca 1151 . . . . . . . 8 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
117116ex 399 . . . . . . 7 ((𝐴 ≈ ω ∧ 𝑍𝑉) → (𝑓:ℕ–1-1-onto𝐴 → (𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
11898, 117eximd 2251 . . . . . 6 ((𝐴 ≈ ω ∧ 𝑍𝑉) → (∃𝑓 𝑓:ℕ–1-1-onto𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
11997, 118mpd 15 . . . . 5 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
120119a1d 25 . . . 4 ((𝐴 ≈ ω ∧ 𝑍𝑉) → (¬ 𝑍𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
12190, 120jaoian 970 . . 3 (((𝐴 ≺ ω ∨ 𝐴 ≈ ω) ∧ 𝑍𝑉) → (¬ 𝑍𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
1221213impia 1138 . 2 (((𝐴 ≺ ω ∨ 𝐴 ≈ ω) ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
1231, 122syl3an1b 1515 1 ((𝐴 ≼ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  w3a 1100   = wceq 1637  wex 1859  wcel 2155  Vcvv 3387  cdif 3760  cun 3761  cin 3762  wss 3763  c0 4110  {csn 4364   class class class wbr 4837  cmpt 4916   × cxp 5303  ccnv 5304  ran crn 5306  cres 5307  cima 5308  Fun wfun 6089   Fn wfn 6090  wf 6091  1-1wf1 6092  ontowfo 6093  1-1-ontowf1o 6094  cfv 6095  (class class class)co 6868  ωcom 7289  cen 8183  cdom 8184  csdm 8185  Fincfn 8186  1c1 10216  cn 11299  ...cfz 12543  chash 13331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-rep 4957  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173  ax-inf2 8779  ax-cnex 10271  ax-resscn 10272  ax-1cn 10273  ax-icn 10274  ax-addcl 10275  ax-addrcl 10276  ax-mulcl 10277  ax-mulrcl 10278  ax-mulcom 10279  ax-addass 10280  ax-mulass 10281  ax-distr 10282  ax-i2m1 10283  ax-1ne0 10284  ax-1rid 10285  ax-rnegex 10286  ax-rrecex 10287  ax-cnre 10288  ax-pre-lttri 10289  ax-pre-lttrn 10290  ax-pre-ltadd 10291  ax-pre-mulgt0 10292
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-nel 3078  df-ral 3097  df-rex 3098  df-reu 3099  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-int 4663  df-iun 4707  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-riota 6829  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-om 7290  df-1st 7392  df-2nd 7393  df-wrecs 7636  df-recs 7698  df-rdg 7736  df-1o 7790  df-er 7973  df-en 8187  df-dom 8188  df-sdom 8189  df-fin 8190  df-card 9042  df-pnf 10355  df-mnf 10356  df-xr 10357  df-ltxr 10358  df-le 10359  df-sub 10547  df-neg 10548  df-nn 11300  df-n0 11554  df-z 11638  df-uz 11899  df-fz 12544  df-hash 13332
This theorem is referenced by:  carsggect  30699
  Copyright terms: Public domain W3C validator