Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  padct Structured version   Visualization version   GIF version

Theorem padct 30457
Description: Index a countable set with integers and pad with 𝑍. (Contributed by Thierry Arnoux, 1-Jun-2020.)
Assertion
Ref Expression
padct ((𝐴 ≼ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
Distinct variable groups:   𝐴,𝑓   𝑓,𝑉   𝑓,𝑍

Proof of Theorem padct
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdom2 8541 . 2 (𝐴 ≼ ω ↔ (𝐴 ≺ ω ∨ 𝐴 ≈ ω))
2 nfv 1915 . . . . . 6 𝑔(𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴)
3 nfv 1915 . . . . . 6 𝑔𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))
4 isfinite2 8778 . . . . . . . . . 10 (𝐴 ≺ ω → 𝐴 ∈ Fin)
5 isfinite4 13726 . . . . . . . . . 10 (𝐴 ∈ Fin ↔ (1...(♯‘𝐴)) ≈ 𝐴)
64, 5sylib 220 . . . . . . . . 9 (𝐴 ≺ ω → (1...(♯‘𝐴)) ≈ 𝐴)
76adantr 483 . . . . . . . 8 ((𝐴 ≺ ω ∧ 𝑍𝑉) → (1...(♯‘𝐴)) ≈ 𝐴)
8 bren 8520 . . . . . . . 8 ((1...(♯‘𝐴)) ≈ 𝐴 ↔ ∃𝑔 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴)
97, 8sylib 220 . . . . . . 7 ((𝐴 ≺ ω ∧ 𝑍𝑉) → ∃𝑔 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴)
1093adant3 1128 . . . . . 6 ((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑔 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴)
11 f1of 6617 . . . . . . . . . . . 12 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴𝑔:(1...(♯‘𝐴))⟶𝐴)
1211adantl 484 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑔:(1...(♯‘𝐴))⟶𝐴)
13 fconstmpt 5616 . . . . . . . . . . . . 13 ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍}) = (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)
1413eqcomi 2832 . . . . . . . . . . . 12 (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍})
15 simplr 767 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑍𝑉)
16 fconst2g 6967 . . . . . . . . . . . . 13 (𝑍𝑉 → ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(♯‘𝐴)))⟶{𝑍} ↔ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍})))
1715, 16syl 17 . . . . . . . . . . . 12 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(♯‘𝐴)))⟶{𝑍} ↔ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍})))
1814, 17mpbiri 260 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(♯‘𝐴)))⟶{𝑍})
19 disjdif 4423 . . . . . . . . . . . 12 ((1...(♯‘𝐴)) ∩ (ℕ ∖ (1...(♯‘𝐴)))) = ∅
2019a1i 11 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((1...(♯‘𝐴)) ∩ (ℕ ∖ (1...(♯‘𝐴)))) = ∅)
21 fun 6542 . . . . . . . . . . 11 (((𝑔:(1...(♯‘𝐴))⟶𝐴 ∧ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(♯‘𝐴)))⟶{𝑍}) ∧ ((1...(♯‘𝐴)) ∩ (ℕ ∖ (1...(♯‘𝐴)))) = ∅) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴))))⟶(𝐴 ∪ {𝑍}))
2212, 18, 20, 21syl21anc 835 . . . . . . . . . 10 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴))))⟶(𝐴 ∪ {𝑍}))
23 fz1ssnn 12941 . . . . . . . . . . . 12 (1...(♯‘𝐴)) ⊆ ℕ
24 undif 4432 . . . . . . . . . . . 12 ((1...(♯‘𝐴)) ⊆ ℕ ↔ ((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴)))) = ℕ)
2523, 24mpbi 232 . . . . . . . . . . 11 ((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴)))) = ℕ
2625feq2i 6508 . . . . . . . . . 10 ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):((1...(♯‘𝐴)) ∪ (ℕ ∖ (1...(♯‘𝐴))))⟶(𝐴 ∪ {𝑍}) ↔ (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}))
2722, 26sylib 220 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}))
28273adantl3 1164 . . . . . . . 8 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}))
29 ssid 3991 . . . . . . . . . . . . 13 𝐴𝐴
30 simpr 487 . . . . . . . . . . . . . 14 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴)
31 f1ofo 6624 . . . . . . . . . . . . . 14 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴𝑔:(1...(♯‘𝐴))–onto𝐴)
32 forn 6595 . . . . . . . . . . . . . 14 (𝑔:(1...(♯‘𝐴))–onto𝐴 → ran 𝑔 = 𝐴)
3330, 31, 323syl 18 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ran 𝑔 = 𝐴)
3429, 33sseqtrrid 4022 . . . . . . . . . . . 12 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ ran 𝑔)
3534orcd 869 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝐴 ⊆ ran 𝑔𝐴 ⊆ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
36 ssun 4167 . . . . . . . . . . 11 ((𝐴 ⊆ ran 𝑔𝐴 ⊆ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → 𝐴 ⊆ (ran 𝑔 ∪ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
3735, 36syl 17 . . . . . . . . . 10 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ (ran 𝑔 ∪ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
38 rnun 6006 . . . . . . . . . 10 ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) = (ran 𝑔 ∪ ran (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍))
3937, 38sseqtrrdi 4020 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
40393adantl3 1164 . . . . . . . 8 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
41 dff1o3 6623 . . . . . . . . . . 11 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 ↔ (𝑔:(1...(♯‘𝐴))–onto𝐴 ∧ Fun 𝑔))
4241simprbi 499 . . . . . . . . . 10 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 → Fun 𝑔)
4342adantl 484 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → Fun 𝑔)
44 cnvun 6003 . . . . . . . . . . . . 13 (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) = (𝑔(𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍))
4544reseq1i 5851 . . . . . . . . . . . 12 ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = ((𝑔(𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴)
46 resundir 5870 . . . . . . . . . . . 12 ((𝑔(𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴))
4745, 46eqtri 2846 . . . . . . . . . . 11 ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴))
48 dff1o4 6625 . . . . . . . . . . . . . . . 16 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 ↔ (𝑔 Fn (1...(♯‘𝐴)) ∧ 𝑔 Fn 𝐴))
4948simprbi 499 . . . . . . . . . . . . . . 15 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴𝑔 Fn 𝐴)
50 fnresdm 6468 . . . . . . . . . . . . . . 15 (𝑔 Fn 𝐴 → (𝑔𝐴) = 𝑔)
5149, 50syl 17 . . . . . . . . . . . . . 14 (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝑔𝐴) = 𝑔)
5251adantl 484 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑔𝐴) = 𝑔)
53 simpl3 1189 . . . . . . . . . . . . . 14 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ¬ 𝑍𝐴)
5414cnveqi 5747 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍})
55 cnvxp 6016 . . . . . . . . . . . . . . . . 17 ((ℕ ∖ (1...(♯‘𝐴))) × {𝑍}) = ({𝑍} × (ℕ ∖ (1...(♯‘𝐴))))
5654, 55eqtri 2846 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) = ({𝑍} × (ℕ ∖ (1...(♯‘𝐴))))
5756reseq1i 5851 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴) = (({𝑍} × (ℕ ∖ (1...(♯‘𝐴)))) ↾ 𝐴)
58 incom 4180 . . . . . . . . . . . . . . . . 17 (𝐴 ∩ {𝑍}) = ({𝑍} ∩ 𝐴)
59 disjsn 4649 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∩ {𝑍}) = ∅ ↔ ¬ 𝑍𝐴)
6059biimpri 230 . . . . . . . . . . . . . . . . 17 𝑍𝐴 → (𝐴 ∩ {𝑍}) = ∅)
6158, 60syl5eqr 2872 . . . . . . . . . . . . . . . 16 𝑍𝐴 → ({𝑍} ∩ 𝐴) = ∅)
62 xpdisjres 30350 . . . . . . . . . . . . . . . 16 (({𝑍} ∩ 𝐴) = ∅ → (({𝑍} × (ℕ ∖ (1...(♯‘𝐴)))) ↾ 𝐴) = ∅)
6361, 62syl 17 . . . . . . . . . . . . . . 15 𝑍𝐴 → (({𝑍} × (ℕ ∖ (1...(♯‘𝐴)))) ↾ 𝐴) = ∅)
6457, 63syl5eq 2870 . . . . . . . . . . . . . 14 𝑍𝐴 → ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴) = ∅)
6553, 64syl 17 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴) = ∅)
6652, 65uneq12d 4142 . . . . . . . . . . . 12 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴)) = (𝑔 ∪ ∅))
67 un0 4346 . . . . . . . . . . . 12 (𝑔 ∪ ∅) = 𝑔
6866, 67syl6eq 2874 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ↾ 𝐴)) = 𝑔)
6947, 68syl5eq 2870 . . . . . . . . . 10 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = 𝑔)
7069funeqd 6379 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → (Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴) ↔ Fun 𝑔))
7143, 70mpbird 259 . . . . . . . 8 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴))
72 vex 3499 . . . . . . . . . 10 𝑔 ∈ V
73 nnex 11646 . . . . . . . . . . . 12 ℕ ∈ V
74 difexg 5233 . . . . . . . . . . . 12 (ℕ ∈ V → (ℕ ∖ (1...(♯‘𝐴))) ∈ V)
7573, 74ax-mp 5 . . . . . . . . . . 11 (ℕ ∖ (1...(♯‘𝐴))) ∈ V
7675mptex 6988 . . . . . . . . . 10 (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍) ∈ V
7772, 76unex 7471 . . . . . . . . 9 (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ∈ V
78 feq1 6497 . . . . . . . . . 10 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → (𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ↔ (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍})))
79 rneq 5808 . . . . . . . . . . 11 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → ran 𝑓 = ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
8079sseq2d 4001 . . . . . . . . . 10 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → (𝐴 ⊆ ran 𝑓𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍))))
81 cnveq 5746 . . . . . . . . . . . 12 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → 𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)))
82 eqidd 2824 . . . . . . . . . . . 12 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → 𝐴 = 𝐴)
8381, 82reseq12d 5856 . . . . . . . . . . 11 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → (𝑓𝐴) = ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴))
8483funeqd 6379 . . . . . . . . . 10 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → (Fun (𝑓𝐴) ↔ Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴)))
8578, 80, 843anbi123d 1432 . . . . . . . . 9 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) → ((𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)) ↔ ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ∧ Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴))))
8677, 85spcev 3609 . . . . . . . 8 (((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ∧ Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(♯‘𝐴))) ↦ 𝑍)) ↾ 𝐴)) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
8728, 40, 71, 86syl3anc 1367 . . . . . . 7 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(♯‘𝐴))–1-1-onto𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
8887ex 415 . . . . . 6 ((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → (𝑔:(1...(♯‘𝐴))–1-1-onto𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
892, 3, 10, 88exlimimdd 2219 . . . . 5 ((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
90893expia 1117 . . . 4 ((𝐴 ≺ ω ∧ 𝑍𝑉) → (¬ 𝑍𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
91 nnenom 13351 . . . . . . . 8 ℕ ≈ ω
92 simpl 485 . . . . . . . . 9 ((𝐴 ≈ ω ∧ 𝑍𝑉) → 𝐴 ≈ ω)
9392ensymd 8562 . . . . . . . 8 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ω ≈ 𝐴)
94 entr 8563 . . . . . . . 8 ((ℕ ≈ ω ∧ ω ≈ 𝐴) → ℕ ≈ 𝐴)
9591, 93, 94sylancr 589 . . . . . . 7 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ℕ ≈ 𝐴)
96 bren 8520 . . . . . . 7 (ℕ ≈ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
9795, 96sylib 220 . . . . . 6 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
98 nfv 1915 . . . . . . 7 𝑓(𝐴 ≈ ω ∧ 𝑍𝑉)
99 simpr 487 . . . . . . . . . 10 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ–1-1-onto𝐴)
100 f1of 6617 . . . . . . . . . 10 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ⟶𝐴)
101 ssun1 4150 . . . . . . . . . . 11 𝐴 ⊆ (𝐴 ∪ {𝑍})
102 fss 6529 . . . . . . . . . . 11 ((𝑓:ℕ⟶𝐴𝐴 ⊆ (𝐴 ∪ {𝑍})) → 𝑓:ℕ⟶(𝐴 ∪ {𝑍}))
103101, 102mpan2 689 . . . . . . . . . 10 (𝑓:ℕ⟶𝐴𝑓:ℕ⟶(𝐴 ∪ {𝑍}))
10499, 100, 1033syl 18 . . . . . . . . 9 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ⟶(𝐴 ∪ {𝑍}))
105 f1ofo 6624 . . . . . . . . . . 11 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ–onto𝐴)
106 forn 6595 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 → ran 𝑓 = 𝐴)
10799, 105, 1063syl 18 . . . . . . . . . 10 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → ran 𝑓 = 𝐴)
10829, 107sseqtrrid 4022 . . . . . . . . 9 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝐴 ⊆ ran 𝑓)
109 f1ocnv 6629 . . . . . . . . . . 11 (𝑓:ℕ–1-1-onto𝐴𝑓:𝐴1-1-onto→ℕ)
110 f1of1 6616 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto→ℕ → 𝑓:𝐴1-1→ℕ)
11199, 109, 1103syl 18 . . . . . . . . . 10 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:𝐴1-1→ℕ)
112 f1ores 6631 . . . . . . . . . . 11 ((𝑓:𝐴1-1→ℕ ∧ 𝐴𝐴) → (𝑓𝐴):𝐴1-1-onto→(𝑓𝐴))
11329, 112mpan2 689 . . . . . . . . . 10 (𝑓:𝐴1-1→ℕ → (𝑓𝐴):𝐴1-1-onto→(𝑓𝐴))
114 f1ofun 6619 . . . . . . . . . 10 ((𝑓𝐴):𝐴1-1-onto→(𝑓𝐴) → Fun (𝑓𝐴))
115111, 113, 1143syl 18 . . . . . . . . 9 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → Fun (𝑓𝐴))
116104, 108, 1153jca 1124 . . . . . . . 8 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
117116ex 415 . . . . . . 7 ((𝐴 ≈ ω ∧ 𝑍𝑉) → (𝑓:ℕ–1-1-onto𝐴 → (𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
11898, 117eximd 2216 . . . . . 6 ((𝐴 ≈ ω ∧ 𝑍𝑉) → (∃𝑓 𝑓:ℕ–1-1-onto𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
11997, 118mpd 15 . . . . 5 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
120119a1d 25 . . . 4 ((𝐴 ≈ ω ∧ 𝑍𝑉) → (¬ 𝑍𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
12190, 120jaoian 953 . . 3 (((𝐴 ≺ ω ∨ 𝐴 ≈ ω) ∧ 𝑍𝑉) → (¬ 𝑍𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
1221213impia 1113 . 2 (((𝐴 ≺ ω ∨ 𝐴 ≈ ω) ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
1231, 122syl3an1b 1399 1 ((𝐴 ≼ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wex 1780  wcel 2114  Vcvv 3496  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293  {csn 4569   class class class wbr 5068  cmpt 5148   × cxp 5555  ccnv 5556  ran crn 5558  cres 5559  cima 5560  Fun wfun 6351   Fn wfn 6352  wf 6353  1-1wf1 6354  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  ωcom 7582  cen 8508  cdom 8509  csdm 8510  Fincfn 8511  1c1 10540  cn 11640  ...cfz 12895  chash 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694
This theorem is referenced by:  carsggect  31578
  Copyright terms: Public domain W3C validator