MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlttr Structured version   Visualization version   GIF version

Theorem xrlttr 12874
Description: Ordering on the extended reals is transitive. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
xrlttr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem xrlttr
StepHypRef Expression
1 elxr 12852 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 12852 . . 3 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
3 elxr 12852 . . . . . . . . 9 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
4 lttr 11051 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
543expa 1117 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
65an32s 649 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
7 rexr 11021 . . . . . . . . . . . . . . . 16 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
8 pnfnlt 12864 . . . . . . . . . . . . . . . 16 (𝐶 ∈ ℝ* → ¬ +∞ < 𝐶)
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝐶 ∈ ℝ → ¬ +∞ < 𝐶)
109adantr 481 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ ∧ 𝐵 = +∞) → ¬ +∞ < 𝐶)
11 breq1 5077 . . . . . . . . . . . . . . 15 (𝐵 = +∞ → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
1211adantl 482 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
1310, 12mtbird 325 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐵 = +∞) → ¬ 𝐵 < 𝐶)
1413pm2.21d 121 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 < 𝐶𝐴 < 𝐶))
1514adantll 711 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐵 < 𝐶𝐴 < 𝐶))
1615adantld 491 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
17 rexr 11021 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
18 nltmnf 12865 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
1917, 18syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → ¬ 𝐴 < -∞)
2019adantr 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
21 breq2 5078 . . . . . . . . . . . . . . 15 (𝐵 = -∞ → (𝐴 < 𝐵𝐴 < -∞))
2221adantl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
2320, 22mtbird 325 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
2423pm2.21d 121 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < 𝐶))
2524adantlr 712 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < 𝐶))
2625adantrd 492 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = -∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
276, 16, 263jaodan 1429 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
283, 27sylan2b 594 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
2928an32s 649 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
30 ltpnf 12856 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 < +∞)
3130adantr 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐶 = +∞) → 𝐴 < +∞)
32 breq2 5078 . . . . . . . . . . 11 (𝐶 = +∞ → (𝐴 < 𝐶𝐴 < +∞))
3332adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐶 = +∞) → (𝐴 < 𝐶𝐴 < +∞))
3431, 33mpbird 256 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 = +∞) → 𝐴 < 𝐶)
3534adantlr 712 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = +∞) → 𝐴 < 𝐶)
3635a1d 25 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = +∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
37 nltmnf 12865 . . . . . . . . . . . 12 (𝐵 ∈ ℝ* → ¬ 𝐵 < -∞)
3837adantr 481 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐶 = -∞) → ¬ 𝐵 < -∞)
39 breq2 5078 . . . . . . . . . . . 12 (𝐶 = -∞ → (𝐵 < 𝐶𝐵 < -∞))
4039adantl 482 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐶 = -∞) → (𝐵 < 𝐶𝐵 < -∞))
4138, 40mtbird 325 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 = -∞) → ¬ 𝐵 < 𝐶)
4241pm2.21d 121 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 = -∞) → (𝐵 < 𝐶𝐴 < 𝐶))
4342adantld 491 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐶 = -∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
4443adantll 711 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = -∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
4529, 36, 443jaodan 1429 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞)) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
4645anasss 467 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
47 pnfnlt 12864 . . . . . . . . . 10 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
4847adantl 482 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
49 breq1 5077 . . . . . . . . . 10 (𝐴 = +∞ → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
5049adantr 481 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
5148, 50mtbird 325 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ 𝐴 < 𝐵)
5251pm2.21d 121 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴 < 𝐶))
5352adantrd 492 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
5453adantrr 714 . . . . 5 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
55 mnflt 12859 . . . . . . . . . . 11 (𝐶 ∈ ℝ → -∞ < 𝐶)
5655adantl 482 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐶 ∈ ℝ) → -∞ < 𝐶)
57 breq1 5077 . . . . . . . . . . 11 (𝐴 = -∞ → (𝐴 < 𝐶 ↔ -∞ < 𝐶))
5857adantr 481 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ -∞ < 𝐶))
5956, 58mpbird 256 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐶 ∈ ℝ) → 𝐴 < 𝐶)
6059a1d 25 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6160adantlr 712 . . . . . . 7 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
62 mnfltpnf 12862 . . . . . . . . . 10 -∞ < +∞
63 breq12 5079 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐶 = +∞) → (𝐴 < 𝐶 ↔ -∞ < +∞))
6462, 63mpbiri 257 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐶 = +∞) → 𝐴 < 𝐶)
6564a1d 25 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐶 = +∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6665adantlr 712 . . . . . . 7 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = +∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6743adantll 711 . . . . . . 7 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = -∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6861, 66, 673jaodan 1429 . . . . . 6 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞)) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6968anasss 467 . . . . 5 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
7046, 54, 693jaoian 1428 . . . 4 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
71703impb 1114 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞)) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
722, 71syl3an3b 1404 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
731, 72syl3an1b 1402 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cr 10870  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014
This theorem is referenced by:  xrltso  12875  xrlelttr  12890  xrltletr  12891  xrlttrd  12893  xrub  13046  ioo0  13104  ioojoin  13215  hashgt23el  14139  leordtval2  22363  icopnfcld  23931  iocmnfcld  23932  ismbf3d  24818  tanord1  25693  tan2h  35769  asindmre  35860  iccpartlt  44876
  Copyright terms: Public domain W3C validator