MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlttr Structured version   Visualization version   GIF version

Theorem xrlttr 13107
Description: Ordering on the extended reals is transitive. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
xrlttr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem xrlttr
StepHypRef Expression
1 elxr 13083 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 13083 . . 3 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
3 elxr 13083 . . . . . . . . 9 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
4 lttr 11257 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
543expa 1118 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
65an32s 652 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
7 rexr 11227 . . . . . . . . . . . . . . . 16 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
8 pnfnlt 13095 . . . . . . . . . . . . . . . 16 (𝐶 ∈ ℝ* → ¬ +∞ < 𝐶)
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝐶 ∈ ℝ → ¬ +∞ < 𝐶)
109adantr 480 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ ∧ 𝐵 = +∞) → ¬ +∞ < 𝐶)
11 breq1 5113 . . . . . . . . . . . . . . 15 (𝐵 = +∞ → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
1211adantl 481 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
1310, 12mtbird 325 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐵 = +∞) → ¬ 𝐵 < 𝐶)
1413pm2.21d 121 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 < 𝐶𝐴 < 𝐶))
1514adantll 714 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐵 < 𝐶𝐴 < 𝐶))
1615adantld 490 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
17 rexr 11227 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
18 nltmnf 13096 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
1917, 18syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → ¬ 𝐴 < -∞)
2019adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
21 breq2 5114 . . . . . . . . . . . . . . 15 (𝐵 = -∞ → (𝐴 < 𝐵𝐴 < -∞))
2221adantl 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
2320, 22mtbird 325 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
2423pm2.21d 121 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < 𝐶))
2524adantlr 715 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < 𝐶))
2625adantrd 491 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = -∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
276, 16, 263jaodan 1433 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
283, 27sylan2b 594 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
2928an32s 652 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
30 ltpnf 13087 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 < +∞)
3130adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐶 = +∞) → 𝐴 < +∞)
32 breq2 5114 . . . . . . . . . . 11 (𝐶 = +∞ → (𝐴 < 𝐶𝐴 < +∞))
3332adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐶 = +∞) → (𝐴 < 𝐶𝐴 < +∞))
3431, 33mpbird 257 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 = +∞) → 𝐴 < 𝐶)
3534adantlr 715 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = +∞) → 𝐴 < 𝐶)
3635a1d 25 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = +∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
37 nltmnf 13096 . . . . . . . . . . . 12 (𝐵 ∈ ℝ* → ¬ 𝐵 < -∞)
3837adantr 480 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐶 = -∞) → ¬ 𝐵 < -∞)
39 breq2 5114 . . . . . . . . . . . 12 (𝐶 = -∞ → (𝐵 < 𝐶𝐵 < -∞))
4039adantl 481 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐶 = -∞) → (𝐵 < 𝐶𝐵 < -∞))
4138, 40mtbird 325 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 = -∞) → ¬ 𝐵 < 𝐶)
4241pm2.21d 121 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 = -∞) → (𝐵 < 𝐶𝐴 < 𝐶))
4342adantld 490 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐶 = -∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
4443adantll 714 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = -∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
4529, 36, 443jaodan 1433 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞)) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
4645anasss 466 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
47 pnfnlt 13095 . . . . . . . . . 10 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
4847adantl 481 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
49 breq1 5113 . . . . . . . . . 10 (𝐴 = +∞ → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
5049adantr 480 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
5148, 50mtbird 325 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ 𝐴 < 𝐵)
5251pm2.21d 121 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴 < 𝐶))
5352adantrd 491 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
5453adantrr 717 . . . . 5 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
55 mnflt 13090 . . . . . . . . . . 11 (𝐶 ∈ ℝ → -∞ < 𝐶)
5655adantl 481 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐶 ∈ ℝ) → -∞ < 𝐶)
57 breq1 5113 . . . . . . . . . . 11 (𝐴 = -∞ → (𝐴 < 𝐶 ↔ -∞ < 𝐶))
5857adantr 480 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ -∞ < 𝐶))
5956, 58mpbird 257 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐶 ∈ ℝ) → 𝐴 < 𝐶)
6059a1d 25 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6160adantlr 715 . . . . . . 7 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
62 mnfltpnf 13093 . . . . . . . . . 10 -∞ < +∞
63 breq12 5115 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐶 = +∞) → (𝐴 < 𝐶 ↔ -∞ < +∞))
6462, 63mpbiri 258 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐶 = +∞) → 𝐴 < 𝐶)
6564a1d 25 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐶 = +∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6665adantlr 715 . . . . . . 7 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = +∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6743adantll 714 . . . . . . 7 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = -∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6861, 66, 673jaodan 1433 . . . . . 6 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞)) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6968anasss 466 . . . . 5 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
7046, 54, 693jaoian 1432 . . . 4 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
71703impb 1114 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞)) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
722, 71syl3an3b 1407 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
731, 72syl3an1b 1405 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cr 11074  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220
This theorem is referenced by:  xrltso  13108  xrlelttr  13123  xrltletr  13124  xrlttrd  13126  xrub  13279  ioo0  13338  ioojoin  13451  hashgt23el  14396  leordtval2  23106  icopnfcld  24662  iocmnfcld  24663  ismbf3d  25562  tanord1  26453  tan2h  37613  asindmre  37704  iccpartlt  47429
  Copyright terms: Public domain W3C validator