MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlttr Structured version   Visualization version   GIF version

Theorem xrlttr 12521
Description: Ordering on the extended reals is transitive. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
xrlttr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem xrlttr
StepHypRef Expression
1 elxr 12499 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 12499 . . 3 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
3 elxr 12499 . . . . . . . . 9 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
4 lttr 10706 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
543expa 1115 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
65an32s 651 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
7 rexr 10676 . . . . . . . . . . . . . . . 16 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
8 pnfnlt 12511 . . . . . . . . . . . . . . . 16 (𝐶 ∈ ℝ* → ¬ +∞ < 𝐶)
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝐶 ∈ ℝ → ¬ +∞ < 𝐶)
109adantr 484 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ ∧ 𝐵 = +∞) → ¬ +∞ < 𝐶)
11 breq1 5033 . . . . . . . . . . . . . . 15 (𝐵 = +∞ → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
1211adantl 485 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
1310, 12mtbird 328 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐵 = +∞) → ¬ 𝐵 < 𝐶)
1413pm2.21d 121 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 < 𝐶𝐴 < 𝐶))
1514adantll 713 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐵 < 𝐶𝐴 < 𝐶))
1615adantld 494 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
17 rexr 10676 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
18 nltmnf 12512 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
1917, 18syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → ¬ 𝐴 < -∞)
2019adantr 484 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
21 breq2 5034 . . . . . . . . . . . . . . 15 (𝐵 = -∞ → (𝐴 < 𝐵𝐴 < -∞))
2221adantl 485 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
2320, 22mtbird 328 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
2423pm2.21d 121 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < 𝐶))
2524adantlr 714 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < 𝐶))
2625adantrd 495 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = -∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
276, 16, 263jaodan 1427 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
283, 27sylan2b 596 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
2928an32s 651 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
30 ltpnf 12503 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 < +∞)
3130adantr 484 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐶 = +∞) → 𝐴 < +∞)
32 breq2 5034 . . . . . . . . . . 11 (𝐶 = +∞ → (𝐴 < 𝐶𝐴 < +∞))
3332adantl 485 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐶 = +∞) → (𝐴 < 𝐶𝐴 < +∞))
3431, 33mpbird 260 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 = +∞) → 𝐴 < 𝐶)
3534adantlr 714 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = +∞) → 𝐴 < 𝐶)
3635a1d 25 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = +∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
37 nltmnf 12512 . . . . . . . . . . . 12 (𝐵 ∈ ℝ* → ¬ 𝐵 < -∞)
3837adantr 484 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐶 = -∞) → ¬ 𝐵 < -∞)
39 breq2 5034 . . . . . . . . . . . 12 (𝐶 = -∞ → (𝐵 < 𝐶𝐵 < -∞))
4039adantl 485 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐶 = -∞) → (𝐵 < 𝐶𝐵 < -∞))
4138, 40mtbird 328 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 = -∞) → ¬ 𝐵 < 𝐶)
4241pm2.21d 121 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 = -∞) → (𝐵 < 𝐶𝐴 < 𝐶))
4342adantld 494 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐶 = -∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
4443adantll 713 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = -∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
4529, 36, 443jaodan 1427 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞)) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
4645anasss 470 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
47 pnfnlt 12511 . . . . . . . . . 10 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
4847adantl 485 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
49 breq1 5033 . . . . . . . . . 10 (𝐴 = +∞ → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
5049adantr 484 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
5148, 50mtbird 328 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ 𝐴 < 𝐵)
5251pm2.21d 121 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴 < 𝐶))
5352adantrd 495 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
5453adantrr 716 . . . . 5 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
55 mnflt 12506 . . . . . . . . . . 11 (𝐶 ∈ ℝ → -∞ < 𝐶)
5655adantl 485 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐶 ∈ ℝ) → -∞ < 𝐶)
57 breq1 5033 . . . . . . . . . . 11 (𝐴 = -∞ → (𝐴 < 𝐶 ↔ -∞ < 𝐶))
5857adantr 484 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ -∞ < 𝐶))
5956, 58mpbird 260 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐶 ∈ ℝ) → 𝐴 < 𝐶)
6059a1d 25 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6160adantlr 714 . . . . . . 7 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
62 mnfltpnf 12509 . . . . . . . . . 10 -∞ < +∞
63 breq12 5035 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐶 = +∞) → (𝐴 < 𝐶 ↔ -∞ < +∞))
6462, 63mpbiri 261 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐶 = +∞) → 𝐴 < 𝐶)
6564a1d 25 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐶 = +∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6665adantlr 714 . . . . . . 7 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = +∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6743adantll 713 . . . . . . 7 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = -∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6861, 66, 673jaodan 1427 . . . . . 6 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞)) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6968anasss 470 . . . . 5 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
7046, 54, 693jaoian 1426 . . . 4 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
71703impb 1112 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞)) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
722, 71syl3an3b 1402 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
731, 72syl3an1b 1400 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3o 1083  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5030  cr 10525  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669
This theorem is referenced by:  xrltso  12522  xrlelttr  12537  xrltletr  12538  xrlttrd  12540  xrub  12693  ioo0  12751  ioojoin  12861  hashgt23el  13781  leordtval2  21817  icopnfcld  23373  iocmnfcld  23374  ismbf3d  24258  tanord1  25129  tan2h  35049  asindmre  35140  iccpartlt  43941
  Copyright terms: Public domain W3C validator