MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlttr Structured version   Visualization version   GIF version

Theorem xrlttr 13149
Description: Ordering on the extended reals is transitive. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
xrlttr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem xrlttr
StepHypRef Expression
1 elxr 13125 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 13125 . . 3 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
3 elxr 13125 . . . . . . . . 9 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
4 lttr 11304 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
543expa 1118 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
65an32s 652 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
7 rexr 11274 . . . . . . . . . . . . . . . 16 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
8 pnfnlt 13137 . . . . . . . . . . . . . . . 16 (𝐶 ∈ ℝ* → ¬ +∞ < 𝐶)
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝐶 ∈ ℝ → ¬ +∞ < 𝐶)
109adantr 480 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ ∧ 𝐵 = +∞) → ¬ +∞ < 𝐶)
11 breq1 5120 . . . . . . . . . . . . . . 15 (𝐵 = +∞ → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
1211adantl 481 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
1310, 12mtbird 325 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐵 = +∞) → ¬ 𝐵 < 𝐶)
1413pm2.21d 121 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 < 𝐶𝐴 < 𝐶))
1514adantll 714 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐵 < 𝐶𝐴 < 𝐶))
1615adantld 490 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
17 rexr 11274 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
18 nltmnf 13138 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
1917, 18syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → ¬ 𝐴 < -∞)
2019adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
21 breq2 5121 . . . . . . . . . . . . . . 15 (𝐵 = -∞ → (𝐴 < 𝐵𝐴 < -∞))
2221adantl 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
2320, 22mtbird 325 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
2423pm2.21d 121 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < 𝐶))
2524adantlr 715 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < 𝐶))
2625adantrd 491 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = -∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
276, 16, 263jaodan 1432 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
283, 27sylan2b 594 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
2928an32s 652 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
30 ltpnf 13129 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 < +∞)
3130adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐶 = +∞) → 𝐴 < +∞)
32 breq2 5121 . . . . . . . . . . 11 (𝐶 = +∞ → (𝐴 < 𝐶𝐴 < +∞))
3332adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐶 = +∞) → (𝐴 < 𝐶𝐴 < +∞))
3431, 33mpbird 257 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 = +∞) → 𝐴 < 𝐶)
3534adantlr 715 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = +∞) → 𝐴 < 𝐶)
3635a1d 25 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = +∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
37 nltmnf 13138 . . . . . . . . . . . 12 (𝐵 ∈ ℝ* → ¬ 𝐵 < -∞)
3837adantr 480 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐶 = -∞) → ¬ 𝐵 < -∞)
39 breq2 5121 . . . . . . . . . . . 12 (𝐶 = -∞ → (𝐵 < 𝐶𝐵 < -∞))
4039adantl 481 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐶 = -∞) → (𝐵 < 𝐶𝐵 < -∞))
4138, 40mtbird 325 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 = -∞) → ¬ 𝐵 < 𝐶)
4241pm2.21d 121 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 = -∞) → (𝐵 < 𝐶𝐴 < 𝐶))
4342adantld 490 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐶 = -∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
4443adantll 714 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = -∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
4529, 36, 443jaodan 1432 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞)) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
4645anasss 466 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
47 pnfnlt 13137 . . . . . . . . . 10 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
4847adantl 481 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
49 breq1 5120 . . . . . . . . . 10 (𝐴 = +∞ → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
5049adantr 480 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
5148, 50mtbird 325 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ 𝐴 < 𝐵)
5251pm2.21d 121 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴 < 𝐶))
5352adantrd 491 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
5453adantrr 717 . . . . 5 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
55 mnflt 13132 . . . . . . . . . . 11 (𝐶 ∈ ℝ → -∞ < 𝐶)
5655adantl 481 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐶 ∈ ℝ) → -∞ < 𝐶)
57 breq1 5120 . . . . . . . . . . 11 (𝐴 = -∞ → (𝐴 < 𝐶 ↔ -∞ < 𝐶))
5857adantr 480 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ -∞ < 𝐶))
5956, 58mpbird 257 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐶 ∈ ℝ) → 𝐴 < 𝐶)
6059a1d 25 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6160adantlr 715 . . . . . . 7 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
62 mnfltpnf 13135 . . . . . . . . . 10 -∞ < +∞
63 breq12 5122 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐶 = +∞) → (𝐴 < 𝐶 ↔ -∞ < +∞))
6462, 63mpbiri 258 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐶 = +∞) → 𝐴 < 𝐶)
6564a1d 25 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐶 = +∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6665adantlr 715 . . . . . . 7 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = +∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6743adantll 714 . . . . . . 7 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 = -∞) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6861, 66, 673jaodan 1432 . . . . . 6 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞)) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
6968anasss 466 . . . . 5 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
7046, 54, 693jaoian 1431 . . . 4 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
71703impb 1114 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞)) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
722, 71syl3an3b 1406 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
731, 72syl3an1b 1404 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5117  cr 11121  +∞cpnf 11259  -∞cmnf 11260  *cxr 11261   < clt 11262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-pre-lttrn 11197
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267
This theorem is referenced by:  xrltso  13150  xrlelttr  13165  xrltletr  13166  xrlttrd  13168  xrub  13321  ioo0  13379  ioojoin  13490  hashgt23el  14432  leordtval2  23137  icopnfcld  24693  iocmnfcld  24694  ismbf3d  25594  tanord1  26484  tan2h  37565  asindmre  37656  iccpartlt  47364
  Copyright terms: Public domain W3C validator