MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unieqOLD Structured version   Visualization version   GIF version

Theorem unieqOLD 4851
Description: Obsolete version of unieq 4850 as of 13-Apr-2024. (Contributed by NM, 10-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) 29-Jun-2011.)
Assertion
Ref Expression
unieqOLD (𝐴 = 𝐵 𝐴 = 𝐵)

Proof of Theorem unieqOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 3343 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐴 𝑦𝑥 ↔ ∃𝑥𝐵 𝑦𝑥))
21abbidv 2807 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥} = {𝑦 ∣ ∃𝑥𝐵 𝑦𝑥})
3 dfuni2 4841 . 2 𝐴 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥}
4 dfuni2 4841 . 2 𝐵 = {𝑦 ∣ ∃𝑥𝐵 𝑦𝑥}
52, 3, 43eqtr4g 2803 1 (𝐴 = 𝐵 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  {cab 2715  wrex 3065   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-ral 3069  df-rex 3070  df-uni 4840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator