| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unieqi | Structured version Visualization version GIF version | ||
| Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unieqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | unieq 4869 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-uni 4859 |
| This theorem is referenced by: elunirab 4873 unisng 4876 unidif0 5299 univ 5394 uniop 5458 dfiun3g 5909 op1sta 6174 op2nda 6177 dfdm2 6229 unixpid 6232 unisucs 6386 iotajust 6437 dfiota2 6439 cbviotaw 6445 cbviotavw 6446 cbviota 6447 sb8iota 6449 dffv4 6819 funfv2f 6912 funiunfv 7184 elunirnALT 7188 riotauni 7312 ordunisuc 7765 1st0 7930 2nd0 7931 unielxp 7962 brtpos0 8166 frrlem5 8223 frrlem8 8226 frrlem10 8228 dfrecs3 8295 recsfval 8303 tz7.44-3 8330 nlim1 8407 nlim2 8408 uniqs 8701 xpassen 8988 dffi3 9321 dfsup2 9334 sup00 9355 r1limg 9667 jech9.3 9710 rankxplim2 9776 rankxplim3 9777 rankxpsuc 9778 dfac5lem2 10018 kmlem11 10055 cflim2 10157 fin23lem30 10236 fin23lem34 10240 itunisuc 10313 itunitc 10315 ituniiun 10316 ac6num 10373 rankcf 10671 dprd2da 19923 dmdprdsplit2lem 19926 lssuni 20842 basdif0 22838 tgdif0 22877 neiptopuni 23015 restcls 23066 restntr 23067 pnrmopn 23228 cncmp 23277 discmp 23283 hauscmplem 23291 unisngl 23412 xkouni 23484 uptx 23510 ufildr 23816 ptcmplem3 23939 utop2nei 24136 utopreg 24138 zcld 24700 icccmp 24712 cncfcnvcn 24817 cnmpopc 24820 cnheibor 24852 evth 24856 evth2 24857 iunmbl 25452 voliun 25453 dvcnvrelem2 25921 ftc1 25947 aannenlem2 26235 bday1s 27746 old0 27771 made0 27789 old1 27791 madeoldsuc 27801 zs12bday 28365 isconstr 33719 circtopn 33820 locfinref 33824 zarmxt1 33863 tpr2rico 33895 cbvesum 34025 cbvesumv 34026 unibrsiga 34169 sxbrsigalem3 34256 dya2iocucvr 34268 sxbrsigalem1 34269 sibf0 34318 sibff 34320 sitgclg 34326 probfinmeasbALTV 34413 coinflipuniv 34466 fineqvnttrclse 35093 wevgblacfn 35102 cvmliftlem10 35287 dfon2lem7 35783 dfrdg2 35789 dfiota3 35917 dffv5 35918 dfrecs2 35944 dfrdg4 35945 ordcmp 36441 bj-nuliotaALT 37052 mptsnun 37333 finxp1o 37386 ftc1cnnc 37692 cnvepima 38325 sn-iotalemcor 42215 onsucunitp 43366 dfom6 43524 refsum2cnlem1 45035 lptre2pt 45641 limclner 45652 limclr 45656 stoweidlem62 46063 fourierdlem42 46150 fourierdlem80 46187 fouriercnp 46227 qndenserrn 46300 salexct3 46343 salgencntex 46344 salgensscntex 46345 subsalsal 46360 0ome 46530 borelmbl 46637 mbfresmf 46740 cnfsmf 46741 incsmf 46743 smfmbfcex 46761 decsmf 46768 smfpimbor1lem2 46800 dftpos5 48878 ipoglb0 48998 setrec2 49700 |
| Copyright terms: Public domain | W3C validator |