Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unieqi | Structured version Visualization version GIF version |
Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unieqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | unieq 4847 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 |
This theorem is referenced by: elunirab 4852 unisng 4857 unidif0 5277 univ 5361 uniop 5423 dfiun3g 5862 op1sta 6117 op2nda 6120 dfdm2 6173 unixpid 6176 unisuc 6327 iotajust 6375 dfiota2 6377 cbviotaw 6383 cbviotavw 6384 cbviota 6386 sb8iota 6388 dffv4 6753 funfv2f 6839 funiunfv 7103 elunirnALT 7107 riotauni 7218 ordunisuc 7654 1st0 7810 2nd0 7811 unielxp 7842 brtpos0 8020 frrlem5 8077 frrlem8 8080 frrlem10 8082 dfwrecsOLD 8100 dfrecs3 8174 dfrecs3OLD 8175 recsfval 8183 tz7.44-3 8210 uniqs 8524 xpassen 8806 dffi3 9120 dfsup2 9133 sup00 9153 r1limg 9460 jech9.3 9503 rankxplim2 9569 rankxplim3 9570 rankxpsuc 9571 dfac5lem2 9811 kmlem11 9847 cflim2 9950 fin23lem30 10029 fin23lem34 10033 itunisuc 10106 itunitc 10108 ituniiun 10109 ac6num 10166 rankcf 10464 dprd2da 19560 dmdprdsplit2lem 19563 lssuni 20116 basdif0 22011 tgdif0 22050 neiptopuni 22189 restcls 22240 restntr 22241 pnrmopn 22402 cncmp 22451 discmp 22457 hauscmplem 22465 unisngl 22586 xkouni 22658 uptx 22684 ufildr 22990 ptcmplem3 23113 utop2nei 23310 utopreg 23312 zcld 23882 icccmp 23894 cncfcnvcn 23994 cnmpopc 23997 cnheibor 24024 evth 24028 evth2 24029 iunmbl 24622 voliun 24623 dvcnvrelem2 25087 ftc1 25111 aannenlem2 25394 circtopn 31689 locfinref 31693 zarmxt1 31732 tpr2rico 31764 cbvesum 31910 unibrsiga 32054 sxbrsigalem3 32139 dya2iocucvr 32151 sxbrsigalem1 32152 sibf0 32201 sibff 32203 sitgclg 32209 probfinmeasbALTV 32296 coinflipuniv 32348 cvmliftlem10 33156 dfon2lem7 33671 dfrdg2 33677 bday1s 33952 old0 33970 made0 33984 madeoldsuc 33994 dfiota3 34152 dffv5 34153 dfrecs2 34179 dfrdg4 34180 ordcmp 34563 bj-nuliotaALT 35156 mptsnun 35437 finxp1o 35490 ftc1cnnc 35776 uniqsALTV 36391 cnvepima 36399 sn-iotalemcor 40118 dfom6 41036 refsum2cnlem1 42469 lptre2pt 43071 limclner 43082 limclr 43086 stoweidlem62 43493 fourierdlem42 43580 fourierdlem80 43617 fouriercnp 43657 qndenserrn 43730 salexct3 43771 salgencntex 43772 salgensscntex 43773 subsalsal 43788 0ome 43957 borelmbl 44064 mbfresmf 44162 cnfsmf 44163 incsmf 44165 smfmbfcex 44182 decsmf 44189 smfpimbor1lem2 44220 ipoglb0 46168 setrec2 46287 |
Copyright terms: Public domain | W3C validator |