| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unieqi | Structured version Visualization version GIF version | ||
| Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unieqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | unieq 4878 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cuni 4867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-uni 4868 |
| This theorem is referenced by: elunirab 4882 unisng 4885 unidif0 5310 univ 5406 uniop 5470 dfiun3g 5920 op1sta 6186 op2nda 6189 dfdm2 6242 unixpid 6245 unisucs 6399 iotajust 6451 dfiota2 6453 cbviotaw 6459 cbviotavw 6460 cbviota 6461 sb8iota 6463 dffv4 6837 funfv2f 6932 funiunfv 7204 elunirnALT 7208 riotauni 7332 ordunisuc 7787 1st0 7953 2nd0 7954 unielxp 7985 brtpos0 8189 frrlem5 8246 frrlem8 8249 frrlem10 8251 dfrecs3 8318 recsfval 8326 tz7.44-3 8353 nlim1 8430 nlim2 8431 uniqs 8724 xpassen 9012 dffi3 9358 dfsup2 9371 sup00 9392 r1limg 9700 jech9.3 9743 rankxplim2 9809 rankxplim3 9810 rankxpsuc 9811 dfac5lem2 10053 kmlem11 10090 cflim2 10192 fin23lem30 10271 fin23lem34 10275 itunisuc 10348 itunitc 10350 ituniiun 10351 ac6num 10408 rankcf 10706 dprd2da 19958 dmdprdsplit2lem 19961 lssuni 20877 basdif0 22873 tgdif0 22912 neiptopuni 23050 restcls 23101 restntr 23102 pnrmopn 23263 cncmp 23312 discmp 23318 hauscmplem 23326 unisngl 23447 xkouni 23519 uptx 23545 ufildr 23851 ptcmplem3 23974 utop2nei 24171 utopreg 24173 zcld 24735 icccmp 24747 cncfcnvcn 24852 cnmpopc 24855 cnheibor 24887 evth 24891 evth2 24892 iunmbl 25487 voliun 25488 dvcnvrelem2 25956 ftc1 25982 aannenlem2 26270 bday1s 27780 old0 27804 made0 27822 old1 27824 madeoldsuc 27834 zs12bday 28396 isconstr 33719 circtopn 33820 locfinref 33824 zarmxt1 33863 tpr2rico 33895 cbvesum 34025 cbvesumv 34026 unibrsiga 34169 sxbrsigalem3 34256 dya2iocucvr 34268 sxbrsigalem1 34269 sibf0 34318 sibff 34320 sitgclg 34326 probfinmeasbALTV 34413 coinflipuniv 34466 wevgblacfn 35089 cvmliftlem10 35274 dfon2lem7 35770 dfrdg2 35776 dfiota3 35904 dffv5 35905 dfrecs2 35931 dfrdg4 35932 ordcmp 36428 bj-nuliotaALT 37039 mptsnun 37320 finxp1o 37373 ftc1cnnc 37679 cnvepima 38312 sn-iotalemcor 42203 onsucunitp 43355 dfom6 43513 refsum2cnlem1 45024 lptre2pt 45631 limclner 45642 limclr 45646 stoweidlem62 46053 fourierdlem42 46140 fourierdlem80 46177 fouriercnp 46217 qndenserrn 46290 salexct3 46333 salgencntex 46334 salgensscntex 46335 subsalsal 46350 0ome 46520 borelmbl 46627 mbfresmf 46730 cnfsmf 46731 incsmf 46733 smfmbfcex 46751 decsmf 46758 smfpimbor1lem2 46790 dftpos5 48855 ipoglb0 48975 setrec2 49677 |
| Copyright terms: Public domain | W3C validator |