| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unieqi | Structured version Visualization version GIF version | ||
| Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unieqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | unieq 4894 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-uni 4884 |
| This theorem is referenced by: elunirab 4898 unisng 4901 unidif0 5330 univ 5426 uniop 5490 dfiun3g 5947 op1sta 6214 op2nda 6217 dfdm2 6270 unixpid 6273 unisucs 6430 iotajust 6482 dfiota2 6484 cbviotaw 6490 cbviotavw 6491 cbviota 6492 sb8iota 6494 dffv4 6872 funfv2f 6967 funiunfv 7239 elunirnALT 7243 riotauni 7366 ordunisuc 7824 1st0 7992 2nd0 7993 unielxp 8024 brtpos0 8230 frrlem5 8287 frrlem8 8290 frrlem10 8292 dfwrecsOLD 8310 dfrecs3 8384 dfrecs3OLD 8385 recsfval 8393 tz7.44-3 8420 nlim1 8499 nlim2 8500 uniqs 8789 xpassen 9078 dffi3 9441 dfsup2 9454 sup00 9475 r1limg 9783 jech9.3 9826 rankxplim2 9892 rankxplim3 9893 rankxpsuc 9894 dfac5lem2 10136 kmlem11 10173 cflim2 10275 fin23lem30 10354 fin23lem34 10358 itunisuc 10431 itunitc 10433 ituniiun 10434 ac6num 10491 rankcf 10789 dprd2da 20023 dmdprdsplit2lem 20026 lssuni 20894 basdif0 22889 tgdif0 22928 neiptopuni 23066 restcls 23117 restntr 23118 pnrmopn 23279 cncmp 23328 discmp 23334 hauscmplem 23342 unisngl 23463 xkouni 23535 uptx 23561 ufildr 23867 ptcmplem3 23990 utop2nei 24187 utopreg 24189 zcld 24751 icccmp 24763 cncfcnvcn 24868 cnmpopc 24871 cnheibor 24903 evth 24907 evth2 24908 iunmbl 25504 voliun 25505 dvcnvrelem2 25973 ftc1 25999 aannenlem2 26287 bday1s 27793 old0 27815 made0 27829 old1 27831 madeoldsuc 27840 zs12bday 28341 isconstr 33716 circtopn 33814 locfinref 33818 zarmxt1 33857 tpr2rico 33889 cbvesum 34019 cbvesumv 34020 unibrsiga 34163 sxbrsigalem3 34250 dya2iocucvr 34262 sxbrsigalem1 34263 sibf0 34312 sibff 34314 sitgclg 34320 probfinmeasbALTV 34407 coinflipuniv 34460 wevgblacfn 35077 cvmliftlem10 35262 dfon2lem7 35753 dfrdg2 35759 dfiota3 35887 dffv5 35888 dfrecs2 35914 dfrdg4 35915 ordcmp 36411 bj-nuliotaALT 37022 mptsnun 37303 finxp1o 37356 ftc1cnnc 37662 uniqsALTV 38293 cnvepima 38301 sn-iotalemcor 42219 onsucunitp 43344 dfom6 43502 refsum2cnlem1 45009 lptre2pt 45617 limclner 45628 limclr 45632 stoweidlem62 46039 fourierdlem42 46126 fourierdlem80 46163 fouriercnp 46203 qndenserrn 46276 salexct3 46319 salgencntex 46320 salgensscntex 46321 subsalsal 46336 0ome 46506 borelmbl 46613 mbfresmf 46716 cnfsmf 46717 incsmf 46719 smfmbfcex 46737 decsmf 46744 smfpimbor1lem2 46776 dftpos5 48797 ipoglb0 48916 setrec2 49507 |
| Copyright terms: Public domain | W3C validator |