| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unieqi | Structured version Visualization version GIF version | ||
| Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unieqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | unieq 4885 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-uni 4875 |
| This theorem is referenced by: elunirab 4889 unisng 4892 unidif0 5318 univ 5414 uniop 5478 dfiun3g 5934 op1sta 6201 op2nda 6204 dfdm2 6257 unixpid 6260 unisucs 6414 iotajust 6466 dfiota2 6468 cbviotaw 6474 cbviotavw 6475 cbviota 6476 sb8iota 6478 dffv4 6858 funfv2f 6953 funiunfv 7225 elunirnALT 7229 riotauni 7353 ordunisuc 7810 1st0 7977 2nd0 7978 unielxp 8009 brtpos0 8215 frrlem5 8272 frrlem8 8275 frrlem10 8277 dfrecs3 8344 recsfval 8352 tz7.44-3 8379 nlim1 8456 nlim2 8457 uniqs 8750 xpassen 9040 dffi3 9389 dfsup2 9402 sup00 9423 r1limg 9731 jech9.3 9774 rankxplim2 9840 rankxplim3 9841 rankxpsuc 9842 dfac5lem2 10084 kmlem11 10121 cflim2 10223 fin23lem30 10302 fin23lem34 10306 itunisuc 10379 itunitc 10381 ituniiun 10382 ac6num 10439 rankcf 10737 dprd2da 19981 dmdprdsplit2lem 19984 lssuni 20852 basdif0 22847 tgdif0 22886 neiptopuni 23024 restcls 23075 restntr 23076 pnrmopn 23237 cncmp 23286 discmp 23292 hauscmplem 23300 unisngl 23421 xkouni 23493 uptx 23519 ufildr 23825 ptcmplem3 23948 utop2nei 24145 utopreg 24147 zcld 24709 icccmp 24721 cncfcnvcn 24826 cnmpopc 24829 cnheibor 24861 evth 24865 evth2 24866 iunmbl 25461 voliun 25462 dvcnvrelem2 25930 ftc1 25956 aannenlem2 26244 bday1s 27750 old0 27774 made0 27792 old1 27794 madeoldsuc 27803 zs12bday 28350 isconstr 33733 circtopn 33834 locfinref 33838 zarmxt1 33877 tpr2rico 33909 cbvesum 34039 cbvesumv 34040 unibrsiga 34183 sxbrsigalem3 34270 dya2iocucvr 34282 sxbrsigalem1 34283 sibf0 34332 sibff 34334 sitgclg 34340 probfinmeasbALTV 34427 coinflipuniv 34480 wevgblacfn 35103 cvmliftlem10 35288 dfon2lem7 35784 dfrdg2 35790 dfiota3 35918 dffv5 35919 dfrecs2 35945 dfrdg4 35946 ordcmp 36442 bj-nuliotaALT 37053 mptsnun 37334 finxp1o 37387 ftc1cnnc 37693 cnvepima 38326 sn-iotalemcor 42217 onsucunitp 43369 dfom6 43527 refsum2cnlem1 45038 lptre2pt 45645 limclner 45656 limclr 45660 stoweidlem62 46067 fourierdlem42 46154 fourierdlem80 46191 fouriercnp 46231 qndenserrn 46304 salexct3 46347 salgencntex 46348 salgensscntex 46349 subsalsal 46364 0ome 46534 borelmbl 46641 mbfresmf 46744 cnfsmf 46745 incsmf 46747 smfmbfcex 46765 decsmf 46772 smfpimbor1lem2 46804 dftpos5 48866 ipoglb0 48986 setrec2 49688 |
| Copyright terms: Public domain | W3C validator |