| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unieqi | Structured version Visualization version GIF version | ||
| Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unieqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | unieq 4867 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-uni 4857 |
| This theorem is referenced by: elunirab 4871 unisng 4874 unidif0 5296 univ 5390 uniop 5453 dfiun3g 5906 op1sta 6172 op2nda 6175 dfdm2 6228 unixpid 6231 unisucs 6385 iotajust 6436 dfiota2 6438 cbviotaw 6444 cbviotavw 6445 cbviota 6446 sb8iota 6448 dffv4 6819 funfv2f 6911 funiunfv 7182 elunirnALT 7186 riotauni 7309 ordunisuc 7762 1st0 7927 2nd0 7928 unielxp 7959 brtpos0 8163 frrlem5 8220 frrlem8 8223 frrlem10 8225 dfrecs3 8292 recsfval 8300 tz7.44-3 8327 nlim1 8404 nlim2 8405 uniqs 8698 xpassen 8984 dffi3 9315 dfsup2 9328 sup00 9349 r1limg 9664 jech9.3 9707 rankxplim2 9773 rankxplim3 9774 rankxpsuc 9775 dfac5lem2 10015 kmlem11 10052 cflim2 10154 fin23lem30 10233 fin23lem34 10237 itunisuc 10310 itunitc 10312 ituniiun 10313 ac6num 10370 rankcf 10668 dprd2da 19956 dmdprdsplit2lem 19959 lssuni 20872 basdif0 22868 tgdif0 22907 neiptopuni 23045 restcls 23096 restntr 23097 pnrmopn 23258 cncmp 23307 discmp 23313 hauscmplem 23321 unisngl 23442 xkouni 23514 uptx 23540 ufildr 23846 ptcmplem3 23969 utop2nei 24165 utopreg 24167 zcld 24729 icccmp 24741 cncfcnvcn 24846 cnmpopc 24849 cnheibor 24881 evth 24885 evth2 24886 iunmbl 25481 voliun 25482 dvcnvrelem2 25950 ftc1 25976 aannenlem2 26264 bday1s 27775 old0 27800 made0 27818 old1 27820 madeoldsuc 27830 zs12bday 28394 isconstr 33749 circtopn 33850 locfinref 33854 zarmxt1 33893 tpr2rico 33925 cbvesum 34055 cbvesumv 34056 unibrsiga 34199 sxbrsigalem3 34285 dya2iocucvr 34297 sxbrsigalem1 34298 sibf0 34347 sibff 34349 sitgclg 34355 probfinmeasbALTV 34442 coinflipuniv 34495 fineqvnttrclse 35144 wevgblacfn 35153 cvmliftlem10 35338 dfon2lem7 35831 dfrdg2 35837 dfiota3 35965 dffv5 35966 dfrecs2 35994 dfrdg4 35995 ordcmp 36491 bj-nuliotaALT 37102 mptsnun 37383 finxp1o 37436 ftc1cnnc 37731 cnvepima 38368 sn-iotalemcor 42314 onsucunitp 43465 dfom6 43623 refsum2cnlem1 45133 lptre2pt 45737 limclner 45748 limclr 45752 stoweidlem62 46159 fourierdlem42 46246 fourierdlem80 46283 fouriercnp 46323 qndenserrn 46396 salexct3 46439 salgencntex 46440 salgensscntex 46441 subsalsal 46456 0ome 46626 borelmbl 46733 mbfresmf 46836 cnfsmf 46837 incsmf 46839 smfmbfcex 46857 decsmf 46864 smfpimbor1lem2 46896 dftpos5 48973 ipoglb0 49093 setrec2 49795 |
| Copyright terms: Public domain | W3C validator |