| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unieqi | Structured version Visualization version GIF version | ||
| Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unieqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | unieq 4882 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-uni 4872 |
| This theorem is referenced by: elunirab 4886 unisng 4889 unidif0 5315 univ 5411 uniop 5475 dfiun3g 5931 op1sta 6198 op2nda 6201 dfdm2 6254 unixpid 6257 unisucs 6411 iotajust 6463 dfiota2 6465 cbviotaw 6471 cbviotavw 6472 cbviota 6473 sb8iota 6475 dffv4 6855 funfv2f 6950 funiunfv 7222 elunirnALT 7226 riotauni 7350 ordunisuc 7807 1st0 7974 2nd0 7975 unielxp 8006 brtpos0 8212 frrlem5 8269 frrlem8 8272 frrlem10 8274 dfrecs3 8341 recsfval 8349 tz7.44-3 8376 nlim1 8453 nlim2 8454 uniqs 8747 xpassen 9035 dffi3 9382 dfsup2 9395 sup00 9416 r1limg 9724 jech9.3 9767 rankxplim2 9833 rankxplim3 9834 rankxpsuc 9835 dfac5lem2 10077 kmlem11 10114 cflim2 10216 fin23lem30 10295 fin23lem34 10299 itunisuc 10372 itunitc 10374 ituniiun 10375 ac6num 10432 rankcf 10730 dprd2da 19974 dmdprdsplit2lem 19977 lssuni 20845 basdif0 22840 tgdif0 22879 neiptopuni 23017 restcls 23068 restntr 23069 pnrmopn 23230 cncmp 23279 discmp 23285 hauscmplem 23293 unisngl 23414 xkouni 23486 uptx 23512 ufildr 23818 ptcmplem3 23941 utop2nei 24138 utopreg 24140 zcld 24702 icccmp 24714 cncfcnvcn 24819 cnmpopc 24822 cnheibor 24854 evth 24858 evth2 24859 iunmbl 25454 voliun 25455 dvcnvrelem2 25923 ftc1 25949 aannenlem2 26237 bday1s 27743 old0 27767 made0 27785 old1 27787 madeoldsuc 27796 zs12bday 28343 isconstr 33726 circtopn 33827 locfinref 33831 zarmxt1 33870 tpr2rico 33902 cbvesum 34032 cbvesumv 34033 unibrsiga 34176 sxbrsigalem3 34263 dya2iocucvr 34275 sxbrsigalem1 34276 sibf0 34325 sibff 34327 sitgclg 34333 probfinmeasbALTV 34420 coinflipuniv 34473 wevgblacfn 35096 cvmliftlem10 35281 dfon2lem7 35777 dfrdg2 35783 dfiota3 35911 dffv5 35912 dfrecs2 35938 dfrdg4 35939 ordcmp 36435 bj-nuliotaALT 37046 mptsnun 37327 finxp1o 37380 ftc1cnnc 37686 cnvepima 38319 sn-iotalemcor 42210 onsucunitp 43362 dfom6 43520 refsum2cnlem1 45031 lptre2pt 45638 limclner 45649 limclr 45653 stoweidlem62 46060 fourierdlem42 46147 fourierdlem80 46184 fouriercnp 46224 qndenserrn 46297 salexct3 46340 salgencntex 46341 salgensscntex 46342 subsalsal 46357 0ome 46527 borelmbl 46634 mbfresmf 46737 cnfsmf 46738 incsmf 46740 smfmbfcex 46758 decsmf 46765 smfpimbor1lem2 46797 dftpos5 48862 ipoglb0 48982 setrec2 49684 |
| Copyright terms: Public domain | W3C validator |