![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unieqi | Structured version Visualization version GIF version |
Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unieqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | unieq 4922 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∪ cuni 4911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-uni 4912 |
This theorem is referenced by: elunirab 4926 unisng 4929 unidif0 5365 univ 5461 uniop 5524 dfiun3g 5980 op1sta 6246 op2nda 6249 dfdm2 6302 unixpid 6305 unisucs 6462 iotajust 6514 dfiota2 6516 cbviotaw 6522 cbviotavw 6523 cbviota 6524 sb8iota 6526 dffv4 6903 funfv2f 6997 funiunfv 7267 elunirnALT 7271 riotauni 7393 ordunisuc 7851 1st0 8018 2nd0 8019 unielxp 8050 brtpos0 8256 frrlem5 8313 frrlem8 8316 frrlem10 8318 dfwrecsOLD 8336 dfrecs3 8410 dfrecs3OLD 8411 recsfval 8419 tz7.44-3 8446 nlim1 8525 nlim2 8526 uniqs 8815 xpassen 9104 dffi3 9468 dfsup2 9481 sup00 9501 r1limg 9808 jech9.3 9851 rankxplim2 9917 rankxplim3 9918 rankxpsuc 9919 dfac5lem2 10161 kmlem11 10198 cflim2 10300 fin23lem30 10379 fin23lem34 10383 itunisuc 10456 itunitc 10458 ituniiun 10459 ac6num 10516 rankcf 10814 dprd2da 20076 dmdprdsplit2lem 20079 lssuni 20954 basdif0 22975 tgdif0 23014 neiptopuni 23153 restcls 23204 restntr 23205 pnrmopn 23366 cncmp 23415 discmp 23421 hauscmplem 23429 unisngl 23550 xkouni 23622 uptx 23648 ufildr 23954 ptcmplem3 24077 utop2nei 24274 utopreg 24276 zcld 24848 icccmp 24860 cncfcnvcn 24965 cnmpopc 24968 cnheibor 25000 evth 25004 evth2 25005 iunmbl 25601 voliun 25602 dvcnvrelem2 26071 ftc1 26097 aannenlem2 26385 bday1s 27890 old0 27912 made0 27926 old1 27928 madeoldsuc 27937 zs12bday 28438 circtopn 33797 locfinref 33801 zarmxt1 33840 tpr2rico 33872 cbvesum 34022 cbvesumv 34023 unibrsiga 34166 sxbrsigalem3 34253 dya2iocucvr 34265 sxbrsigalem1 34266 sibf0 34315 sibff 34317 sitgclg 34323 probfinmeasbALTV 34410 coinflipuniv 34462 wevgblacfn 35092 cvmliftlem10 35278 dfon2lem7 35770 dfrdg2 35776 dfiota3 35904 dffv5 35905 dfrecs2 35931 dfrdg4 35932 ordcmp 36429 bj-nuliotaALT 37040 mptsnun 37321 finxp1o 37374 ftc1cnnc 37678 uniqsALTV 38310 cnvepima 38318 sn-iotalemcor 42239 onsucunitp 43362 dfom6 43520 refsum2cnlem1 44974 lptre2pt 45595 limclner 45606 limclr 45610 stoweidlem62 46017 fourierdlem42 46104 fourierdlem80 46141 fouriercnp 46181 qndenserrn 46254 salexct3 46297 salgencntex 46298 salgensscntex 46299 subsalsal 46314 0ome 46484 borelmbl 46591 mbfresmf 46694 cnfsmf 46695 incsmf 46697 smfmbfcex 46715 decsmf 46722 smfpimbor1lem2 46754 ipoglb0 48782 setrec2 48925 |
Copyright terms: Public domain | W3C validator |