![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unieqi | Structured version Visualization version GIF version |
Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unieqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | unieq 4942 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 |
This theorem is referenced by: elunirab 4946 unisng 4949 unidif0 5378 univ 5471 uniop 5534 dfiun3g 5990 op1sta 6256 op2nda 6259 dfdm2 6312 unixpid 6315 unisucs 6472 iotajust 6524 dfiota2 6526 cbviotaw 6532 cbviotavw 6533 cbviota 6535 sb8iota 6537 dffv4 6917 funfv2f 7011 funiunfv 7285 elunirnALT 7289 riotauni 7410 ordunisuc 7868 1st0 8036 2nd0 8037 unielxp 8068 brtpos0 8274 frrlem5 8331 frrlem8 8334 frrlem10 8336 dfwrecsOLD 8354 dfrecs3 8428 dfrecs3OLD 8429 recsfval 8437 tz7.44-3 8464 nlim1 8545 nlim2 8546 uniqs 8835 xpassen 9132 dffi3 9500 dfsup2 9513 sup00 9533 r1limg 9840 jech9.3 9883 rankxplim2 9949 rankxplim3 9950 rankxpsuc 9951 dfac5lem2 10193 kmlem11 10230 cflim2 10332 fin23lem30 10411 fin23lem34 10415 itunisuc 10488 itunitc 10490 ituniiun 10491 ac6num 10548 rankcf 10846 dprd2da 20086 dmdprdsplit2lem 20089 lssuni 20960 basdif0 22981 tgdif0 23020 neiptopuni 23159 restcls 23210 restntr 23211 pnrmopn 23372 cncmp 23421 discmp 23427 hauscmplem 23435 unisngl 23556 xkouni 23628 uptx 23654 ufildr 23960 ptcmplem3 24083 utop2nei 24280 utopreg 24282 zcld 24854 icccmp 24866 cncfcnvcn 24971 cnmpopc 24974 cnheibor 25006 evth 25010 evth2 25011 iunmbl 25607 voliun 25608 dvcnvrelem2 26077 ftc1 26103 aannenlem2 26389 bday1s 27894 old0 27916 made0 27930 old1 27932 madeoldsuc 27941 zs12bday 28442 circtopn 33783 locfinref 33787 zarmxt1 33826 tpr2rico 33858 cbvesum 34006 cbvesumv 34007 unibrsiga 34150 sxbrsigalem3 34237 dya2iocucvr 34249 sxbrsigalem1 34250 sibf0 34299 sibff 34301 sitgclg 34307 probfinmeasbALTV 34394 coinflipuniv 34446 wevgblacfn 35076 cvmliftlem10 35262 dfon2lem7 35753 dfrdg2 35759 dfiota3 35887 dffv5 35888 dfrecs2 35914 dfrdg4 35915 ordcmp 36413 bj-nuliotaALT 37024 mptsnun 37305 finxp1o 37358 ftc1cnnc 37652 uniqsALTV 38285 cnvepima 38293 sn-iotalemcor 42215 onsucunitp 43335 dfom6 43493 refsum2cnlem1 44937 lptre2pt 45561 limclner 45572 limclr 45576 stoweidlem62 45983 fourierdlem42 46070 fourierdlem80 46107 fouriercnp 46147 qndenserrn 46220 salexct3 46263 salgencntex 46264 salgensscntex 46265 subsalsal 46280 0ome 46450 borelmbl 46557 mbfresmf 46660 cnfsmf 46661 incsmf 46663 smfmbfcex 46681 decsmf 46688 smfpimbor1lem2 46720 ipoglb0 48666 setrec2 48787 |
Copyright terms: Public domain | W3C validator |