![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unieqi | Structured version Visualization version GIF version |
Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unieqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | unieq 4667 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 ∪ cuni 4659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2804 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-rex 3124 df-uni 4660 |
This theorem is referenced by: elunirab 4671 unisng 4674 unisnOLD 4676 unidif0 5061 univ 5141 uniop 5202 dfiun3g 5612 op1sta 5860 op2nda 5863 dfdm2 5909 unixpid 5912 unisuc 6040 iotajust 6086 dfiota2 6088 cbviota 6092 sb8iota 6094 dffv4 6431 funfv2f 6515 funiunfv 6762 elunirnALT 6766 riotauni 6873 ordunisuc 7294 1st0 7435 2nd0 7436 unielxp 7467 brtpos0 7625 dfrecs3 7736 recsfval 7744 tz7.44-3 7771 uniqs 8073 xpassen 8324 dffi3 8607 dfsup2 8620 sup00 8640 r1limg 8912 jech9.3 8955 rankxplim2 9021 rankxplim3 9022 rankxpsuc 9023 dfac5lem2 9261 kmlem11 9298 cflim2 9401 fin23lem30 9480 fin23lem34 9484 itunisuc 9557 itunitc 9559 ituniiun 9560 ac6num 9617 rankcf 9915 dprd2da 18796 dmdprdsplit2lem 18799 lssuni 19297 basdif0 21129 tgdif0 21168 neiptopuni 21306 restcls 21357 restntr 21358 pnrmopn 21519 cncmp 21567 discmp 21573 hauscmplem 21581 unisngl 21702 xkouni 21774 uptx 21800 ufildr 22106 ptcmplem3 22229 utop2nei 22425 utopreg 22427 zcld 22987 icccmp 22999 cncfcnvcn 23095 cnmpt2pc 23098 cnheibor 23125 evth 23129 evth2 23130 iunmbl 23720 voliun 23721 dvcnvrelem2 24181 ftc1 24205 aannenlem2 24484 circtopn 30450 locfinref 30454 tpr2rico 30504 cbvesum 30650 unibrsiga 30795 sxbrsigalem3 30880 dya2iocucvr 30892 sxbrsigalem1 30893 sibf0 30942 sibff 30944 sitgclg 30950 probfinmeasbOLD 31037 coinflipuniv 31090 cvmliftlem10 31823 dfon2lem7 32233 dfrdg2 32240 frrlem6 32329 frrlem7 32330 frrlem10 32331 frrlem11 32332 noetalem4 32406 dfiota3 32570 dffv5 32571 dfrecs2 32597 dfrdg4 32598 ordcmp 32980 bj-nuliotaALT 33543 mptsnun 33733 finxp1o 33775 ftc1cnnc 34028 uniqsALTV 34650 refsum2cnlem1 40015 lptre2pt 40668 limclner 40679 limclr 40683 stoweidlem62 41074 fourierdlem42 41161 fourierdlem80 41198 fouriercnp 41238 qndenserrn 41311 salexct3 41352 salgencntex 41353 salgensscntex 41354 subsalsal 41369 0ome 41538 borelmbl 41645 mbfresmf 41743 cnfsmf 41744 incsmf 41746 smfmbfcex 41763 decsmf 41770 smfpimbor1lem2 41801 setrec2 43338 |
Copyright terms: Public domain | W3C validator |