Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > unt0 | Structured version Visualization version GIF version |
Description: The null set is untangled. (Contributed by Scott Fenton, 10-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
unt0 | ⊢ ∀𝑥 ∈ ∅ ¬ 𝑥 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4440 | 1 ⊢ ∀𝑥 ∈ ∅ ¬ 𝑥 ∈ 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wral 3063 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-ral 3068 df-dif 3886 df-nul 4254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |