![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unt0 | Structured version Visualization version GIF version |
Description: The null set is untangled. (Contributed by Scott Fenton, 10-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
unt0 | ⊢ ∀𝑥 ∈ ∅ ¬ 𝑥 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4299 | 1 ⊢ ∀𝑥 ∈ ∅ ¬ 𝑥 ∈ 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wral 3090 ∅c0 4141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1824 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-ral 3095 df-dif 3795 df-nul 4142 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |