Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unt0 Structured version   Visualization version   GIF version

Theorem unt0 33011
Description: The null set is untangled. (Contributed by Scott Fenton, 10-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
unt0 𝑥 ∈ ∅ ¬ 𝑥𝑥

Proof of Theorem unt0
StepHypRef Expression
1 ral0 4428 1 𝑥 ∈ ∅ ¬ 𝑥𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wral 3130  c0 4265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-ext 2794
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2801  df-cleq 2815  df-clel 2894  df-ral 3135  df-dif 3911  df-nul 4266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator