Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  untint Structured version   Visualization version   GIF version

Theorem untint 33553
Description: If there is an untangled element of a class, then the intersection of the class is untangled. (Contributed by Scott Fenton, 1-Mar-2011.)
Assertion
Ref Expression
untint (∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦 → ∀𝑦 𝐴 ¬ 𝑦𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem untint
StepHypRef Expression
1 intss1 4891 . . 3 (𝑥𝐴 𝐴𝑥)
2 ssralv 3983 . . 3 ( 𝐴𝑥 → (∀𝑦𝑥 ¬ 𝑦𝑦 → ∀𝑦 𝐴 ¬ 𝑦𝑦))
31, 2syl 17 . 2 (𝑥𝐴 → (∀𝑦𝑥 ¬ 𝑦𝑦 → ∀𝑦 𝐴 ¬ 𝑦𝑦))
43rexlimiv 3208 1 (∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦 → ∀𝑦 𝐴 ¬ 𝑦𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  wral 3063  wrex 3064  wss 3883   cint 4876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-in 3890  df-ss 3900  df-int 4877
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator