![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > untint | Structured version Visualization version GIF version |
Description: If there is an untangled element of a class, then the intersection of the class is untangled. (Contributed by Scott Fenton, 1-Mar-2011.) |
Ref | Expression |
---|---|
untint | ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ∀𝑦 ∈ ∩ 𝐴 ¬ 𝑦 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intss1 4967 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
2 | ssralv 4050 | . . 3 ⊢ (∩ 𝐴 ⊆ 𝑥 → (∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ∀𝑦 ∈ ∩ 𝐴 ¬ 𝑦 ∈ 𝑦)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ∀𝑦 ∈ ∩ 𝐴 ¬ 𝑦 ∈ 𝑦)) |
4 | 3 | rexlimiv 3147 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ∀𝑦 ∈ ∩ 𝐴 ¬ 𝑦 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 ⊆ wss 3948 ∩ cint 4950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-v 3475 df-in 3955 df-ss 3965 df-int 4951 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |