Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  untint Structured version   Visualization version   GIF version

Theorem untint 35777
Description: If there is an untangled element of a class, then the intersection of the class is untangled. (Contributed by Scott Fenton, 1-Mar-2011.)
Assertion
Ref Expression
untint (∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦 → ∀𝑦 𝐴 ¬ 𝑦𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem untint
StepHypRef Expression
1 intss1 4913 . . 3 (𝑥𝐴 𝐴𝑥)
2 ssralv 3999 . . 3 ( 𝐴𝑥 → (∀𝑦𝑥 ¬ 𝑦𝑦 → ∀𝑦 𝐴 ¬ 𝑦𝑦))
31, 2syl 17 . 2 (𝑥𝐴 → (∀𝑦𝑥 ¬ 𝑦𝑦 → ∀𝑦 𝐴 ¬ 𝑦𝑦))
43rexlimiv 3127 1 (∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦 → ∀𝑦 𝐴 ¬ 𝑦𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2113  wral 3048  wrex 3057  wss 3898   cint 4897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-v 3439  df-ss 3915  df-int 4898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator