Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  untint Structured version   Visualization version   GIF version

Theorem untint 35734
Description: If there is an untangled element of a class, then the intersection of the class is untangled. (Contributed by Scott Fenton, 1-Mar-2011.)
Assertion
Ref Expression
untint (∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦 → ∀𝑦 𝐴 ¬ 𝑦𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem untint
StepHypRef Expression
1 intss1 4944 . . 3 (𝑥𝐴 𝐴𝑥)
2 ssralv 4032 . . 3 ( 𝐴𝑥 → (∀𝑦𝑥 ¬ 𝑦𝑦 → ∀𝑦 𝐴 ¬ 𝑦𝑦))
31, 2syl 17 . 2 (𝑥𝐴 → (∀𝑦𝑥 ¬ 𝑦𝑦 → ∀𝑦 𝐴 ¬ 𝑦𝑦))
43rexlimiv 3135 1 (∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦 → ∀𝑦 𝐴 ¬ 𝑦𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wral 3052  wrex 3061  wss 3931   cint 4927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-v 3466  df-ss 3948  df-int 4928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator