| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ral0 | Structured version Visualization version GIF version | ||
| Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) Avoid df-clel 2803, ax-8 2111. (Revised by GG, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ ∅ = ∅ | |
| 2 | rzal 4472 | . 2 ⊢ (∅ = ∅ → ∀𝑥 ∈ ∅ 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∀wral 3044 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ral 3045 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: int0 4926 0iin 5028 po0 5563 so0 5584 mpt0 6660 naddrid 8647 ixp0x 8899 ac6sfi 9231 sup0riota 9417 infpssrlem4 10259 axdc3lem4 10406 0tsk 10708 uzsupss 12899 xrsupsslem 13267 xrinfmsslem 13268 xrsup0 13283 fsuppmapnn0fiubex 13957 swrd0 14623 swrdspsleq 14630 repswsymballbi 14745 cshw1 14787 rexfiuz 15314 lcmf0 16604 2prm 16662 0ssc 17799 0subcat 17800 drsdirfi 18266 0pos 18282 mrelatglb0 18520 sgrp0b 18655 ga0 19230 psgnunilem3 19426 lbsexg 21074 ocv0 21586 mdetunilem9 22507 imasdsf1olem 24261 prdsxmslem2 24417 lebnumlem3 24862 cniccbdd 25362 ovolicc2lem4 25421 c1lip1 25902 ulm0 26300 precsexlem9 28117 n0sfincut 28246 zscut 28295 twocut 28309 addhalfcut 28334 istrkg2ld 28387 nbgr1vtx 29285 cplgr0 29352 cplgr1v 29357 wwlksn0s 29791 clwwlkn 29955 clwwlkn1 29970 0ewlk 30043 1ewlk 30044 0wlk 30045 0conngr 30121 frgr0v 30191 frgr0 30194 frgr1v 30200 1vwmgr 30205 chocnul 31257 s1chn 32936 chnub 32938 locfinref 33831 esumnul 34038 derang0 35156 unt0 35698 fdc 37739 lub0N 39182 glb0N 39186 0psubN 39743 sticksstones11 42144 cantnfresb 43313 safesnsupfilb 43407 nla0002 43413 nla0003 43414 iso0 44296 fnchoice 45023 eliuniincex 45103 eliincex 45104 limcdm0 45616 2ffzoeq 47328 iccpartiltu 47423 iccpartigtl 47424 0mgm 48154 linds0 48454 0funcALT 49077 0thincg 49447 termolmd 49659 |
| Copyright terms: Public domain | W3C validator |