| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ral0 | Structured version Visualization version GIF version | ||
| Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) Avoid df-clel 2804, ax-8 2111. (Revised by GG, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ ∅ = ∅ | |
| 2 | rzal 4475 | . 2 ⊢ (∅ = ∅ → ∀𝑥 ∈ ∅ 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∀wral 3045 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-ral 3046 df-dif 3920 df-nul 4300 |
| This theorem is referenced by: int0 4929 0iin 5031 po0 5566 so0 5587 mpt0 6663 naddrid 8650 ixp0x 8902 ac6sfi 9238 sup0riota 9424 infpssrlem4 10266 axdc3lem4 10413 0tsk 10715 uzsupss 12906 xrsupsslem 13274 xrinfmsslem 13275 xrsup0 13290 fsuppmapnn0fiubex 13964 swrd0 14630 swrdspsleq 14637 repswsymballbi 14752 cshw1 14794 rexfiuz 15321 lcmf0 16611 2prm 16669 0ssc 17806 0subcat 17807 drsdirfi 18273 0pos 18289 mrelatglb0 18527 sgrp0b 18662 ga0 19237 psgnunilem3 19433 lbsexg 21081 ocv0 21593 mdetunilem9 22514 imasdsf1olem 24268 prdsxmslem2 24424 lebnumlem3 24869 cniccbdd 25369 ovolicc2lem4 25428 c1lip1 25909 ulm0 26307 precsexlem9 28124 n0sfincut 28253 zscut 28302 twocut 28316 addhalfcut 28341 istrkg2ld 28394 nbgr1vtx 29292 cplgr0 29359 cplgr1v 29364 wwlksn0s 29798 clwwlkn 29962 clwwlkn1 29977 0ewlk 30050 1ewlk 30051 0wlk 30052 0conngr 30128 frgr0v 30198 frgr0 30201 frgr1v 30207 1vwmgr 30212 chocnul 31264 s1chn 32943 chnub 32945 locfinref 33838 esumnul 34045 derang0 35163 unt0 35705 fdc 37746 lub0N 39189 glb0N 39193 0psubN 39750 sticksstones11 42151 cantnfresb 43320 safesnsupfilb 43414 nla0002 43420 nla0003 43421 iso0 44303 fnchoice 45030 eliuniincex 45110 eliincex 45111 limcdm0 45623 2ffzoeq 47332 iccpartiltu 47427 iccpartigtl 47428 0mgm 48158 linds0 48458 0funcALT 49081 0thincg 49451 termolmd 49663 |
| Copyright terms: Public domain | W3C validator |