| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ral0 | Structured version Visualization version GIF version | ||
| Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) Avoid df-clel 2806, ax-8 2113. (Revised by GG, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ ∅ = ∅ | |
| 2 | rzal 4456 | . 2 ⊢ (∅ = ∅ → ∀𝑥 ∈ ∅ 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∀wral 3047 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-ral 3048 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: int0 4910 0iin 5010 po0 5539 so0 5560 mpt0 6623 naddrid 8598 ixp0x 8850 ac6sfi 9168 sup0riota 9350 infpssrlem4 10197 axdc3lem4 10344 0tsk 10646 uzsupss 12838 xrsupsslem 13206 xrinfmsslem 13207 xrsup0 13222 fsuppmapnn0fiubex 13899 swrd0 14566 swrdspsleq 14573 repswsymballbi 14687 cshw1 14729 rexfiuz 15255 lcmf0 16545 2prm 16603 0ssc 17744 0subcat 17745 drsdirfi 18211 0pos 18227 mrelatglb0 18467 s1chn 18526 chnub 18528 sgrp0b 18636 ga0 19210 psgnunilem3 19408 lbsexg 21101 ocv0 21614 mdetunilem9 22535 imasdsf1olem 24288 prdsxmslem2 24444 lebnumlem3 24889 cniccbdd 25389 ovolicc2lem4 25448 c1lip1 25929 ulm0 26327 rightpos 27782 precsexlem9 28153 n0sfincut 28282 zscut 28331 twocut 28346 addhalfcut 28379 istrkg2ld 28438 nbgr1vtx 29336 cplgr0 29403 cplgr1v 29408 wwlksn0s 29839 clwwlkn 30006 clwwlkn1 30021 0ewlk 30094 1ewlk 30095 0wlk 30096 0conngr 30172 frgr0v 30242 frgr0 30245 frgr1v 30251 1vwmgr 30256 chocnul 31308 locfinref 33854 esumnul 34061 derang0 35213 unt0 35755 fdc 37793 lub0N 39236 glb0N 39240 0psubN 39796 sticksstones11 42197 cantnfresb 43365 safesnsupfilb 43459 nla0002 43465 nla0003 43466 iso0 44348 fnchoice 45074 eliuniincex 45154 eliincex 45155 limcdm0 45666 2ffzoeq 47366 iccpartiltu 47461 iccpartigtl 47462 0mgm 48205 linds0 48505 0funcALT 49128 0thincg 49498 termolmd 49710 |
| Copyright terms: Public domain | W3C validator |