Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ral0 | Structured version Visualization version GIF version |
Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) Avoid df-clel 2817, ax-8 2110. (Revised by Gino Giotto, 2-Sep-2024.) |
Ref | Expression |
---|---|
ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ ∅ = ∅ | |
2 | rzal 4436 | . 2 ⊢ (∅ = ∅ → ∀𝑥 ∈ ∅ 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∀wral 3063 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-ral 3068 df-dif 3886 df-nul 4254 |
This theorem is referenced by: int0 4890 0iin 4989 po0 5511 so0 5530 mpt0 6559 ixp0x 8672 ac6sfi 8988 sup0riota 9154 infpssrlem4 9993 axdc3lem4 10140 0tsk 10442 uzsupss 12609 xrsupsslem 12970 xrinfmsslem 12971 xrsup0 12986 fsuppmapnn0fiubex 13640 swrd0 14299 swrdspsleq 14306 repswsymballbi 14421 cshw1 14463 rexfiuz 14987 lcmf0 16267 2prm 16325 0ssc 17468 0subcat 17469 drsdirfi 17938 0pos 17954 0posOLD 17955 mrelatglb0 18194 sgrp0b 18298 ga0 18819 psgnunilem3 19019 lbsexg 20341 ocv0 20794 mdetunilem9 21677 imasdsf1olem 23434 prdsxmslem2 23591 lebnumlem3 24032 cniccbdd 24530 ovolicc2lem4 24589 c1lip1 25066 ulm0 25455 istrkg2ld 26725 nbgr0vtx 27626 nbgr1vtx 27628 cplgr0 27695 cplgr1v 27700 wwlksn0s 28127 clwwlkn 28291 clwwlkn1 28306 0ewlk 28379 1ewlk 28380 0wlk 28381 0conngr 28457 frgr0v 28527 frgr0 28530 frgr1v 28536 1vwmgr 28541 chocnul 29591 locfinref 31693 esumnul 31916 derang0 33031 unt0 33552 naddid1 33763 fdc 35830 lub0N 37130 glb0N 37134 0psubN 37690 sticksstones11 40040 iso0 41814 fnchoice 42461 eliuniincex 42548 eliincex 42549 limcdm0 43049 2ffzoeq 44708 iccpartiltu 44762 iccpartigtl 44763 0mgm 45216 linds0 45694 0thincg 46219 |
Copyright terms: Public domain | W3C validator |