![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ral0 | Structured version Visualization version GIF version |
Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) Avoid df-clel 2813, ax-8 2107. (Revised by GG, 2-Sep-2024.) |
Ref | Expression |
---|---|
ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . 2 ⊢ ∅ = ∅ | |
2 | rzal 4514 | . 2 ⊢ (∅ = ∅ → ∀𝑥 ∈ ∅ 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∀wral 3058 ∅c0 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-ral 3059 df-dif 3965 df-nul 4339 |
This theorem is referenced by: int0 4966 0iin 5068 po0 5613 so0 5633 mpt0 6710 naddrid 8719 ixp0x 8964 ac6sfi 9317 sup0riota 9502 infpssrlem4 10343 axdc3lem4 10490 0tsk 10792 uzsupss 12979 xrsupsslem 13345 xrinfmsslem 13346 xrsup0 13361 fsuppmapnn0fiubex 14029 swrd0 14692 swrdspsleq 14699 repswsymballbi 14814 cshw1 14856 rexfiuz 15382 lcmf0 16667 2prm 16725 0ssc 17887 0subcat 17888 drsdirfi 18362 0pos 18378 0posOLD 18379 mrelatglb0 18618 sgrp0b 18753 ga0 19328 psgnunilem3 19528 lbsexg 21183 ocv0 21712 mdetunilem9 22641 imasdsf1olem 24398 prdsxmslem2 24557 lebnumlem3 25008 cniccbdd 25509 ovolicc2lem4 25568 c1lip1 26050 ulm0 26448 precsexlem9 28253 zscut 28407 nohalf 28421 addhalfcut 28433 istrkg2ld 28482 nbgr1vtx 29389 cplgr0 29456 cplgr1v 29461 wwlksn0s 29890 clwwlkn 30054 clwwlkn1 30069 0ewlk 30142 1ewlk 30143 0wlk 30144 0conngr 30220 frgr0v 30290 frgr0 30293 frgr1v 30299 1vwmgr 30304 chocnul 31356 chnub 32985 locfinref 33801 esumnul 34028 derang0 35153 unt0 35690 fdc 37731 lub0N 39170 glb0N 39174 0psubN 39731 sticksstones11 42137 cantnfresb 43313 safesnsupfilb 43407 nla0002 43413 nla0003 43414 iso0 44302 fnchoice 44966 eliuniincex 45048 eliincex 45049 limcdm0 45573 2ffzoeq 47276 iccpartiltu 47346 iccpartigtl 47347 0mgm 48009 linds0 48310 0thincg 48850 |
Copyright terms: Public domain | W3C validator |