![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ral0 | Structured version Visualization version GIF version |
Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) Avoid df-clel 2819, ax-8 2110. (Revised by GG, 2-Sep-2024.) |
Ref | Expression |
---|---|
ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ ∅ = ∅ | |
2 | rzal 4532 | . 2 ⊢ (∅ = ∅ → ∀𝑥 ∈ ∅ 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∀wral 3067 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-ral 3068 df-dif 3979 df-nul 4353 |
This theorem is referenced by: int0 4986 0iin 5087 po0 5625 so0 5645 mpt0 6722 naddrid 8739 ixp0x 8984 ac6sfi 9348 sup0riota 9534 infpssrlem4 10375 axdc3lem4 10522 0tsk 10824 uzsupss 13005 xrsupsslem 13369 xrinfmsslem 13370 xrsup0 13385 fsuppmapnn0fiubex 14043 swrd0 14706 swrdspsleq 14713 repswsymballbi 14828 cshw1 14870 rexfiuz 15396 lcmf0 16681 2prm 16739 0ssc 17901 0subcat 17902 drsdirfi 18375 0pos 18391 0posOLD 18392 mrelatglb0 18631 sgrp0b 18766 ga0 19338 psgnunilem3 19538 lbsexg 21189 ocv0 21718 mdetunilem9 22647 imasdsf1olem 24404 prdsxmslem2 24563 lebnumlem3 25014 cniccbdd 25515 ovolicc2lem4 25574 c1lip1 26056 ulm0 26452 precsexlem9 28257 zscut 28411 nohalf 28425 addhalfcut 28437 istrkg2ld 28486 nbgr1vtx 29393 cplgr0 29460 cplgr1v 29465 wwlksn0s 29894 clwwlkn 30058 clwwlkn1 30073 0ewlk 30146 1ewlk 30147 0wlk 30148 0conngr 30224 frgr0v 30294 frgr0 30297 frgr1v 30303 1vwmgr 30308 chocnul 31360 chnub 32984 locfinref 33787 esumnul 34012 derang0 35137 unt0 35673 fdc 37705 lub0N 39145 glb0N 39149 0psubN 39706 sticksstones11 42113 cantnfresb 43286 safesnsupfilb 43380 nla0002 43386 nla0003 43387 iso0 44276 fnchoice 44929 eliuniincex 45011 eliincex 45012 limcdm0 45539 2ffzoeq 47242 iccpartiltu 47296 iccpartigtl 47297 0mgm 47889 linds0 48194 0thincg 48717 |
Copyright terms: Public domain | W3C validator |