| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ral0 | Structured version Visualization version GIF version | ||
| Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) Avoid df-clel 2809, ax-8 2110. (Revised by GG, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . 2 ⊢ ∅ = ∅ | |
| 2 | rzal 4484 | . 2 ⊢ (∅ = ∅ → ∀𝑥 ∈ ∅ 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∀wral 3051 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-ral 3052 df-dif 3929 df-nul 4309 |
| This theorem is referenced by: int0 4938 0iin 5040 po0 5578 so0 5599 mpt0 6680 naddrid 8695 ixp0x 8940 ac6sfi 9292 sup0riota 9478 infpssrlem4 10320 axdc3lem4 10467 0tsk 10769 uzsupss 12956 xrsupsslem 13323 xrinfmsslem 13324 xrsup0 13339 fsuppmapnn0fiubex 14010 swrd0 14676 swrdspsleq 14683 repswsymballbi 14798 cshw1 14840 rexfiuz 15366 lcmf0 16653 2prm 16711 0ssc 17850 0subcat 17851 drsdirfi 18317 0pos 18333 mrelatglb0 18571 sgrp0b 18706 ga0 19281 psgnunilem3 19477 lbsexg 21125 ocv0 21637 mdetunilem9 22558 imasdsf1olem 24312 prdsxmslem2 24468 lebnumlem3 24913 cniccbdd 25414 ovolicc2lem4 25473 c1lip1 25954 ulm0 26352 precsexlem9 28169 n0sfincut 28298 zscut 28347 twocut 28361 addhalfcut 28386 istrkg2ld 28439 nbgr1vtx 29337 cplgr0 29404 cplgr1v 29409 wwlksn0s 29843 clwwlkn 30007 clwwlkn1 30022 0ewlk 30095 1ewlk 30096 0wlk 30097 0conngr 30173 frgr0v 30243 frgr0 30246 frgr1v 30252 1vwmgr 30257 chocnul 31309 s1chn 32990 chnub 32992 locfinref 33872 esumnul 34079 derang0 35191 unt0 35728 fdc 37769 lub0N 39207 glb0N 39211 0psubN 39768 sticksstones11 42169 cantnfresb 43348 safesnsupfilb 43442 nla0002 43448 nla0003 43449 iso0 44331 fnchoice 45053 eliuniincex 45133 eliincex 45134 limcdm0 45647 2ffzoeq 47356 iccpartiltu 47436 iccpartigtl 47437 0mgm 48141 linds0 48441 0funcALT 49053 0thincg 49344 |
| Copyright terms: Public domain | W3C validator |