| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ral0 | Structured version Visualization version GIF version | ||
| Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) Avoid df-clel 2803, ax-8 2111. (Revised by GG, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ ∅ = ∅ | |
| 2 | rzal 4468 | . 2 ⊢ (∅ = ∅ → ∀𝑥 ∈ ∅ 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∀wral 3044 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ral 3045 df-dif 3914 df-nul 4293 |
| This theorem is referenced by: int0 4922 0iin 5023 po0 5556 so0 5577 mpt0 6642 naddrid 8624 ixp0x 8876 ac6sfi 9207 sup0riota 9393 infpssrlem4 10235 axdc3lem4 10382 0tsk 10684 uzsupss 12875 xrsupsslem 13243 xrinfmsslem 13244 xrsup0 13259 fsuppmapnn0fiubex 13933 swrd0 14599 swrdspsleq 14606 repswsymballbi 14721 cshw1 14763 rexfiuz 15290 lcmf0 16580 2prm 16638 0ssc 17775 0subcat 17776 drsdirfi 18242 0pos 18258 mrelatglb0 18496 sgrp0b 18631 ga0 19206 psgnunilem3 19402 lbsexg 21050 ocv0 21562 mdetunilem9 22483 imasdsf1olem 24237 prdsxmslem2 24393 lebnumlem3 24838 cniccbdd 25338 ovolicc2lem4 25397 c1lip1 25878 ulm0 26276 precsexlem9 28093 n0sfincut 28222 zscut 28271 twocut 28285 addhalfcut 28310 istrkg2ld 28363 nbgr1vtx 29261 cplgr0 29328 cplgr1v 29333 wwlksn0s 29764 clwwlkn 29928 clwwlkn1 29943 0ewlk 30016 1ewlk 30017 0wlk 30018 0conngr 30094 frgr0v 30164 frgr0 30167 frgr1v 30173 1vwmgr 30178 chocnul 31230 s1chn 32909 chnub 32911 locfinref 33804 esumnul 34011 derang0 35129 unt0 35671 fdc 37712 lub0N 39155 glb0N 39159 0psubN 39716 sticksstones11 42117 cantnfresb 43286 safesnsupfilb 43380 nla0002 43386 nla0003 43387 iso0 44269 fnchoice 44996 eliuniincex 45076 eliincex 45077 limcdm0 45589 2ffzoeq 47301 iccpartiltu 47396 iccpartigtl 47397 0mgm 48127 linds0 48427 0funcALT 49050 0thincg 49420 termolmd 49632 |
| Copyright terms: Public domain | W3C validator |