| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ral0 | Structured version Visualization version GIF version | ||
| Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) Avoid df-clel 2803, ax-8 2111. (Revised by GG, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ ∅ = ∅ | |
| 2 | rzal 4460 | . 2 ⊢ (∅ = ∅ → ∀𝑥 ∈ ∅ 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∀wral 3044 ∅c0 4284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ral 3045 df-dif 3906 df-nul 4285 |
| This theorem is referenced by: int0 4912 0iin 5013 po0 5544 so0 5565 mpt0 6624 naddrid 8601 ixp0x 8853 ac6sfi 9173 sup0riota 9356 infpssrlem4 10200 axdc3lem4 10347 0tsk 10649 uzsupss 12841 xrsupsslem 13209 xrinfmsslem 13210 xrsup0 13225 fsuppmapnn0fiubex 13899 swrd0 14565 swrdspsleq 14572 repswsymballbi 14686 cshw1 14728 rexfiuz 15255 lcmf0 16545 2prm 16603 0ssc 17744 0subcat 17745 drsdirfi 18211 0pos 18227 mrelatglb0 18467 sgrp0b 18602 ga0 19177 psgnunilem3 19375 lbsexg 21071 ocv0 21584 mdetunilem9 22505 imasdsf1olem 24259 prdsxmslem2 24415 lebnumlem3 24860 cniccbdd 25360 ovolicc2lem4 25419 c1lip1 25900 ulm0 26298 precsexlem9 28122 n0sfincut 28251 zscut 28300 twocut 28315 addhalfcut 28347 istrkg2ld 28405 nbgr1vtx 29303 cplgr0 29370 cplgr1v 29375 wwlksn0s 29806 clwwlkn 29970 clwwlkn1 29985 0ewlk 30058 1ewlk 30059 0wlk 30060 0conngr 30136 frgr0v 30206 frgr0 30209 frgr1v 30215 1vwmgr 30220 chocnul 31272 s1chn 32952 chnub 32954 locfinref 33808 esumnul 34015 derang0 35142 unt0 35684 fdc 37725 lub0N 39168 glb0N 39172 0psubN 39728 sticksstones11 42129 cantnfresb 43297 safesnsupfilb 43391 nla0002 43397 nla0003 43398 iso0 44280 fnchoice 45007 eliuniincex 45087 eliincex 45088 limcdm0 45599 2ffzoeq 47311 iccpartiltu 47406 iccpartigtl 47407 0mgm 48150 linds0 48450 0funcALT 49073 0thincg 49443 termolmd 49655 |
| Copyright terms: Public domain | W3C validator |