Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > untsucf | Structured version Visualization version GIF version |
Description: If a class is untangled, then so is its successor. (Contributed by Scott Fenton, 28-Feb-2011.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
untsucf.1 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
untsucf | ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀𝑦 ∈ suc 𝐴 ¬ 𝑦 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | untsucf.1 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
2 | nfv 1917 | . . 3 ⊢ Ⅎ𝑦 ¬ 𝑥 ∈ 𝑥 | |
3 | 1, 2 | nfralw 3151 | . 2 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 |
4 | vex 3436 | . . . 4 ⊢ 𝑦 ∈ V | |
5 | 4 | elsuc 6335 | . . 3 ⊢ (𝑦 ∈ suc 𝐴 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) |
6 | elequ1 2113 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) | |
7 | elequ2 2121 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) | |
8 | 6, 7 | bitrd 278 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
9 | 8 | notbid 318 | . . . . 5 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦)) |
10 | 9 | rspccv 3558 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → (𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑦)) |
11 | untelirr 33649 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ¬ 𝐴 ∈ 𝐴) | |
12 | eleq1 2826 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦)) | |
13 | eleq2 2827 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝐴)) | |
14 | 12, 13 | bitrd 278 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑦 ↔ 𝐴 ∈ 𝐴)) |
15 | 14 | notbid 318 | . . . . 5 ⊢ (𝑦 = 𝐴 → (¬ 𝑦 ∈ 𝑦 ↔ ¬ 𝐴 ∈ 𝐴)) |
16 | 11, 15 | syl5ibrcom 246 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → (𝑦 = 𝐴 → ¬ 𝑦 ∈ 𝑦)) |
17 | 10, 16 | jaod 856 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ((𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴) → ¬ 𝑦 ∈ 𝑦)) |
18 | 5, 17 | syl5bi 241 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → (𝑦 ∈ suc 𝐴 → ¬ 𝑦 ∈ 𝑦)) |
19 | 3, 18 | ralrimi 3141 | 1 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀𝑦 ∈ suc 𝐴 ¬ 𝑦 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 844 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 ∀wral 3064 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-v 3434 df-un 3892 df-sn 4562 df-suc 6272 |
This theorem is referenced by: dfon2lem3 33761 |
Copyright terms: Public domain | W3C validator |