MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vjust Structured version   Visualization version   GIF version

Theorem vjust 3442
Description: Justification theorem for df-v 3443. (Contributed by Rodolfo Medina, 27-Apr-2010.)
Assertion
Ref Expression
vjust {𝑥𝑥 = 𝑥} = {𝑦𝑦 = 𝑦}

Proof of Theorem vjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 equid 2014 . . . 4 𝑥 = 𝑥
21vexw 2719 . . 3 𝑧 ∈ {𝑥𝑥 = 𝑥}
3 equid 2014 . . . 4 𝑦 = 𝑦
43vexw 2719 . . 3 𝑧 ∈ {𝑦𝑦 = 𝑦}
52, 42th 263 . 2 (𝑧 ∈ {𝑥𝑥 = 𝑥} ↔ 𝑧 ∈ {𝑦𝑦 = 𝑦})
65eqriv 2733 1 {𝑥𝑥 = 𝑥} = {𝑦𝑦 = 𝑦}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  {cab 2713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator