| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocl2g | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) Remove dependency on ax-10 2144, ax-11 2160, and ax-13 2372. (Revised by Steven Nguyen, 29-Nov-2022.) |
| Ref | Expression |
|---|---|
| vtocl2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl2g.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| vtocl2g.3 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | vtocl2g.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒))) |
| 4 | vtocl2g.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | vtocl2g.3 | . . . 4 ⊢ 𝜑 | |
| 6 | 4, 5 | vtoclg 3507 | . . 3 ⊢ (𝐴 ∈ V → 𝜓) |
| 7 | 3, 6 | vtoclg 3507 | . 2 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ∈ V → 𝜒)) |
| 8 | 1, 7 | mpan9 506 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 |
| This theorem is referenced by: vtocl3g 3526 vtocl4g 3536 opthg 5415 opelopabsb 5468 vtoclr 5677 funopg 6515 f1osng 6804 fsng 7070 fnpr2g 7144 unexbOLD 7681 op1stg 7933 op2ndg 7934 xpsneng 8975 xpcomeng 8982 sbth 9010 sbthfi 9108 unxpdom 9143 prcdnq 10884 mhmlem 18975 carsgmon 34327 brimageg 35969 brdomaing 35977 brrangeg 35978 rankung 36208 mbfresfi 37714 zindbi 42987 2sbc6g 44456 2sbc5g 44457 fmulcl 45629 |
| Copyright terms: Public domain | W3C validator |