MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl2g Structured version   Visualization version   GIF version

Theorem vtocl2g 3500
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) Remove dependency on ax-10 2139, ax-11 2156, and ax-13 2372. (Revised by Steven Nguyen, 29-Nov-2022.)
Hypotheses
Ref Expression
vtocl2g.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl2g.2 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl2g.3 𝜑
Assertion
Ref Expression
vtocl2g ((𝐴𝑉𝐵𝑊) → 𝜒)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵   𝜓,𝑥   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem vtocl2g
StepHypRef Expression
1 elex 3440 . 2 (𝐴𝑉𝐴 ∈ V)
2 vtocl2g.2 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
32imbi2d 340 . . 3 (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒)))
4 vtocl2g.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
5 vtocl2g.3 . . . 4 𝜑
64, 5vtoclg 3495 . . 3 (𝐴 ∈ V → 𝜓)
73, 6vtoclg 3495 . 2 (𝐵𝑊 → (𝐴 ∈ V → 𝜒))
81, 7mpan9 506 1 ((𝐴𝑉𝐵𝑊) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424
This theorem is referenced by:  vtocl3g  3501  vtocl4g  3509  uniprgOLD  4856  intprgOLD  4912  opthg  5386  opelopabsb  5436  vtoclr  5641  elimasngOLD  5987  funopg  6452  f1osng  6740  fsng  6991  fnpr2g  7068  unexb  7576  op1stg  7816  op2ndg  7817  xpsneng  8797  xpcomeng  8804  sbth  8833  sbthfi  8942  unxpdom  8959  fpwwe2lem4  10321  prcdnq  10680  mhmlem  18610  carsgmon  32181  brimageg  34156  brdomaing  34164  brrangeg  34165  rankung  34395  mbfresfi  35750  zindbi  40684  2sbc6g  41922  2sbc5g  41923  fmulcl  43012
  Copyright terms: Public domain W3C validator