MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl2g Structured version   Visualization version   GIF version

Theorem vtocl2g 3537
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) Remove dependency on ax-10 2142, ax-11 2158, and ax-13 2370. (Revised by Steven Nguyen, 29-Nov-2022.)
Hypotheses
Ref Expression
vtocl2g.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl2g.2 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl2g.3 𝜑
Assertion
Ref Expression
vtocl2g ((𝐴𝑉𝐵𝑊) → 𝜒)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵   𝜓,𝑥   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem vtocl2g
StepHypRef Expression
1 elex 3465 . 2 (𝐴𝑉𝐴 ∈ V)
2 vtocl2g.2 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
32imbi2d 340 . . 3 (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒)))
4 vtocl2g.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
5 vtocl2g.3 . . . 4 𝜑
64, 5vtoclg 3517 . . 3 (𝐴 ∈ V → 𝜓)
73, 6vtoclg 3517 . 2 (𝐵𝑊 → (𝐴 ∈ V → 𝜒))
81, 7mpan9 506 1 ((𝐴𝑉𝐵𝑊) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446
This theorem is referenced by:  vtocl3g  3538  vtocl4g  3548  opthg  5432  opelopabsb  5485  vtoclr  5694  funopg  6534  f1osng  6823  fsng  7091  fnpr2g  7166  unexbOLD  7704  op1stg  7959  op2ndg  7960  xpsneng  9003  xpcomeng  9010  sbth  9038  sbthfi  9140  unxpdom  9176  prcdnq  10922  mhmlem  18976  carsgmon  34298  brimageg  35908  brdomaing  35916  brrangeg  35917  rankung  36147  mbfresfi  37653  zindbi  42928  2sbc6g  44397  2sbc5g  44398  fmulcl  45572
  Copyright terms: Public domain W3C validator