| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocl2g | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) Remove dependency on ax-10 2142, ax-11 2158, and ax-13 2370. (Revised by Steven Nguyen, 29-Nov-2022.) |
| Ref | Expression |
|---|---|
| vtocl2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl2g.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| vtocl2g.3 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | vtocl2g.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒))) |
| 4 | vtocl2g.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | vtocl2g.3 | . . . 4 ⊢ 𝜑 | |
| 6 | 4, 5 | vtoclg 3509 | . . 3 ⊢ (𝐴 ∈ V → 𝜓) |
| 7 | 3, 6 | vtoclg 3509 | . 2 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ∈ V → 𝜒)) |
| 8 | 1, 7 | mpan9 506 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 |
| This theorem is referenced by: vtocl3g 3530 vtocl4g 3540 opthg 5420 opelopabsb 5473 vtoclr 5682 funopg 6516 f1osng 6805 fsng 7071 fnpr2g 7146 unexbOLD 7684 op1stg 7936 op2ndg 7937 xpsneng 8979 xpcomeng 8986 sbth 9014 sbthfi 9113 unxpdom 9148 prcdnq 10887 mhmlem 18941 carsgmon 34282 brimageg 35901 brdomaing 35909 brrangeg 35910 rankung 36140 mbfresfi 37646 zindbi 42919 2sbc6g 44388 2sbc5g 44389 fmulcl 45562 |
| Copyright terms: Public domain | W3C validator |