| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocl2g | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) Remove dependency on ax-10 2142, ax-11 2158, and ax-13 2370. (Revised by Steven Nguyen, 29-Nov-2022.) |
| Ref | Expression |
|---|---|
| vtocl2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl2g.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| vtocl2g.3 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3465 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | vtocl2g.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒))) |
| 4 | vtocl2g.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | vtocl2g.3 | . . . 4 ⊢ 𝜑 | |
| 6 | 4, 5 | vtoclg 3517 | . . 3 ⊢ (𝐴 ∈ V → 𝜓) |
| 7 | 3, 6 | vtoclg 3517 | . 2 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ∈ V → 𝜒)) |
| 8 | 1, 7 | mpan9 506 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 |
| This theorem is referenced by: vtocl3g 3538 vtocl4g 3548 opthg 5432 opelopabsb 5485 vtoclr 5694 funopg 6534 f1osng 6823 fsng 7091 fnpr2g 7166 unexbOLD 7704 op1stg 7959 op2ndg 7960 xpsneng 9003 xpcomeng 9010 sbth 9038 sbthfi 9140 unxpdom 9176 prcdnq 10922 mhmlem 18970 carsgmon 34278 brimageg 35888 brdomaing 35896 brrangeg 35897 rankung 36127 mbfresfi 37633 zindbi 42908 2sbc6g 44377 2sbc5g 44378 fmulcl 45552 |
| Copyright terms: Public domain | W3C validator |