![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtocl2g | Structured version Visualization version GIF version |
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) Remove dependency on ax-10 2137, ax-11 2154, and ax-13 2371. (Revised by Steven Nguyen, 29-Nov-2022.) |
Ref | Expression |
---|---|
vtocl2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl2g.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
vtocl2g.3 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | vtocl2g.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒))) |
4 | vtocl2g.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | vtocl2g.3 | . . . 4 ⊢ 𝜑 | |
6 | 4, 5 | vtoclg 3556 | . . 3 ⊢ (𝐴 ∈ V → 𝜓) |
7 | 3, 6 | vtoclg 3556 | . 2 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ∈ V → 𝜒)) |
8 | 1, 7 | mpan9 507 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 |
This theorem is referenced by: vtocl3g 3563 vtocl4g 3571 uniprgOLD 4928 intprgOLD 4988 opthg 5477 opelopabsb 5530 vtoclr 5739 elimasngOLD 6089 funopg 6582 f1osng 6874 fsng 7137 fnpr2g 7214 unexb 7737 op1stg 7989 op2ndg 7990 xpsneng 9058 xpcomeng 9066 sbth 9095 sbthfi 9204 unxpdom 9255 fpwwe2lem4 10631 prcdnq 10990 mhmlem 18981 carsgmon 33599 brimageg 35191 brdomaing 35199 brrangeg 35200 rankung 35430 mbfresfi 36837 zindbi 41987 2sbc6g 43476 2sbc5g 43477 fmulcl 44596 |
Copyright terms: Public domain | W3C validator |