![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtocl2g | Structured version Visualization version GIF version |
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) Remove dependency on ax-10 2139, ax-11 2155, and ax-13 2375. (Revised by Steven Nguyen, 29-Nov-2022.) |
Ref | Expression |
---|---|
vtocl2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl2g.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
vtocl2g.3 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3499 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | vtocl2g.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒))) |
4 | vtocl2g.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | vtocl2g.3 | . . . 4 ⊢ 𝜑 | |
6 | 4, 5 | vtoclg 3554 | . . 3 ⊢ (𝐴 ∈ V → 𝜓) |
7 | 3, 6 | vtoclg 3554 | . 2 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ∈ V → 𝜒)) |
8 | 1, 7 | mpan9 506 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 |
This theorem is referenced by: vtocl3g 3575 vtocl4g 3585 opthg 5488 opelopabsb 5540 vtoclr 5752 elimasngOLD 6111 funopg 6602 f1osng 6890 fsng 7157 fnpr2g 7230 unexbOLD 7767 op1stg 8025 op2ndg 8026 xpsneng 9095 xpcomeng 9103 sbth 9132 sbthfi 9237 unxpdom 9287 prcdnq 11031 mhmlem 19093 carsgmon 34296 brimageg 35909 brdomaing 35917 brrangeg 35918 rankung 36148 mbfresfi 37653 zindbi 42935 2sbc6g 44411 2sbc5g 44412 fmulcl 45537 |
Copyright terms: Public domain | W3C validator |