| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocl3gaOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of vtocl3ga 3567 as of 31-May-2025. (Contributed by NM, 20-Aug-1995.) Reduce axiom usage. (Revised by GG, 3-Oct-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vtocl3ga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl3ga.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| vtocl3ga.3 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
| vtocl3ga.4 | ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) |
| Ref | Expression |
|---|---|
| vtocl3gaOLD | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2823 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐷 ↔ 𝐴 ∈ 𝐷)) | |
| 2 | 1 | 3anbi1d 1442 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) ↔ (𝐴 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆))) |
| 3 | vtocl3ga.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) ↔ ((𝐴 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜓))) |
| 5 | eleq1 2823 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑅 ↔ 𝐵 ∈ 𝑅)) | |
| 6 | 5 | 3anbi2d 1443 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆))) |
| 7 | vtocl3ga.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 8 | 6, 7 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝐴 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜓) ↔ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜒))) |
| 9 | eleq1 2823 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝑧 ∈ 𝑆 ↔ 𝐶 ∈ 𝑆)) | |
| 10 | 9 | 3anbi3d 1444 | . . . 4 ⊢ (𝑧 = 𝐶 → ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆))) |
| 11 | vtocl3ga.3 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | |
| 12 | 10, 11 | imbi12d 344 | . . 3 ⊢ (𝑧 = 𝐶 → (((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜒) ↔ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃))) |
| 13 | vtocl3ga.4 | . . 3 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) | |
| 14 | 4, 8, 12, 13 | vtocl3g 3559 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃)) |
| 15 | 14 | pm2.43i 52 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |