MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl3gaOLD Structured version   Visualization version   GIF version

Theorem vtocl3gaOLD 3518
Description: Obsolete version of vtocl3ga 3517 as of 3-Oct-2024. (Contributed by NM, 20-Aug-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
vtocl3gaOLD.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl3gaOLD.2 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl3gaOLD.3 (𝑧 = 𝐶 → (𝜒𝜃))
vtocl3gaOLD.4 ((𝑥𝐷𝑦𝑅𝑧𝑆) → 𝜑)
Assertion
Ref Expression
vtocl3gaOLD ((𝐴𝐷𝐵𝑅𝐶𝑆) → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑧,𝐶   𝑥,𝐷,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜓,𝑥   𝜒,𝑦   𝜃,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑦,𝑧)   𝜒(𝑥,𝑧)   𝜃(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem vtocl3gaOLD
StepHypRef Expression
1 nfcv 2907 . 2 𝑥𝐴
2 nfcv 2907 . 2 𝑦𝐴
3 nfcv 2907 . 2 𝑧𝐴
4 nfcv 2907 . 2 𝑦𝐵
5 nfcv 2907 . 2 𝑧𝐵
6 nfcv 2907 . 2 𝑧𝐶
7 nfv 1917 . 2 𝑥𝜓
8 nfv 1917 . 2 𝑦𝜒
9 nfv 1917 . 2 𝑧𝜃
10 vtocl3gaOLD.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
11 vtocl3gaOLD.2 . 2 (𝑦 = 𝐵 → (𝜓𝜒))
12 vtocl3gaOLD.3 . 2 (𝑧 = 𝐶 → (𝜒𝜃))
13 vtocl3gaOLD.4 . 2 ((𝑥𝐷𝑦𝑅𝑧𝑆) → 𝜑)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13vtocl3gaf 3516 1 ((𝐴𝐷𝐵𝑅𝐶𝑆) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-v 3434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator