Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-ax11-lem3 Structured version   Visualization version   GIF version

Theorem wl-ax11-lem3 35665
Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
Assertion
Ref Expression
wl-ax11-lem3 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑢 𝑢 = 𝑦)
Distinct variable group:   𝑥,𝑢

Proof of Theorem wl-ax11-lem3
StepHypRef Expression
1 nfna1 2151 . 2 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
2 naev 2064 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑢 𝑢 = 𝑥)
3 nfa1 2150 . . . . . . 7 𝑢𝑢 𝑢 = 𝑦
4 nfna1 2151 . . . . . . 7 𝑢 ¬ ∀𝑢 𝑢 = 𝑥
53, 4nfan 1903 . . . . . 6 𝑢(∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑢 𝑢 = 𝑥)
6 axc11n 2426 . . . . . . . . . . 11 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
7 wl-aetr 35615 . . . . . . . . . . 11 (∀𝑦 𝑦 = 𝑢 → (∀𝑦 𝑦 = 𝑥 → ∀𝑢 𝑢 = 𝑥))
86, 7syl5 34 . . . . . . . . . 10 (∀𝑦 𝑦 = 𝑢 → (∀𝑥 𝑥 = 𝑦 → ∀𝑢 𝑢 = 𝑥))
98aecoms 2428 . . . . . . . . 9 (∀𝑢 𝑢 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑢 𝑢 = 𝑥))
109con3d 152 . . . . . . . 8 (∀𝑢 𝑢 = 𝑦 → (¬ ∀𝑢 𝑢 = 𝑥 → ¬ ∀𝑥 𝑥 = 𝑦))
1110imdistani 568 . . . . . . 7 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑢 𝑢 = 𝑥) → (∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦))
12 wl-ax11-lem2 35664 . . . . . . 7 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ∀𝑥 𝑢 = 𝑦)
1311, 12syl 17 . . . . . 6 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑢 𝑢 = 𝑥) → ∀𝑥 𝑢 = 𝑦)
145, 13alrimi 2209 . . . . 5 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑢 𝑢 = 𝑥) → ∀𝑢𝑥 𝑢 = 𝑦)
152, 14sylan2 592 . . . 4 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ∀𝑢𝑥 𝑢 = 𝑦)
1615expcom 413 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑢 𝑢 = 𝑦 → ∀𝑢𝑥 𝑢 = 𝑦))
17 ax-wl-11v 35662 . . 3 (∀𝑢𝑥 𝑢 = 𝑦 → ∀𝑥𝑢 𝑢 = 𝑦)
1816, 17syl6 35 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑢 𝑢 = 𝑦 → ∀𝑥𝑢 𝑢 = 𝑦))
191, 18nf5d 2284 1 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑢 𝑢 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1537  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173  ax-13 2372  ax-wl-11v 35662
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788
This theorem is referenced by:  wl-ax11-lem4  35666  wl-ax11-lem6  35668
  Copyright terms: Public domain W3C validator