Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-nfnae1 Structured version   Visualization version   GIF version

Theorem wl-nfnae1 35666
Description: Unlike nfnae 2435, this specialized theorem avoids ax-11 2157. (Contributed by Wolf Lammen, 27-Jun-2019.)
Assertion
Ref Expression
wl-nfnae1 𝑥 ¬ ∀𝑦 𝑦 = 𝑥

Proof of Theorem wl-nfnae1
StepHypRef Expression
1 wl-nfae1 35665 . 2 𝑥𝑦 𝑦 = 𝑥
21nfn 1863 1 𝑥 ¬ ∀𝑦 𝑦 = 𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1539  wnf 1789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-10 2140  ax-12 2174  ax-13 2373
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1786  df-nf 1790
This theorem is referenced by:  wl-cbvalnaed  35670  wl-2sb6d  35692
  Copyright terms: Public domain W3C validator