Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-nfnae1 | Structured version Visualization version GIF version |
Description: Unlike nfnae 2432, this specialized theorem avoids ax-11 2153. (Contributed by Wolf Lammen, 27-Jun-2019.) |
Ref | Expression |
---|---|
wl-nfnae1 | ⊢ Ⅎ𝑥 ¬ ∀𝑦 𝑦 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-nfae1 35799 | . 2 ⊢ Ⅎ𝑥∀𝑦 𝑦 = 𝑥 | |
2 | 1 | nfn 1859 | 1 ⊢ Ⅎ𝑥 ¬ ∀𝑦 𝑦 = 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1538 Ⅎwnf 1784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-12 2170 ax-13 2370 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1781 df-nf 1785 |
This theorem is referenced by: wl-cbvalnaed 35804 wl-2sb6d 35826 |
Copyright terms: Public domain | W3C validator |