![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-nfnae1 | Structured version Visualization version GIF version |
Description: Unlike nfnae 2413, this specialized theorem avoids ax-11 2126. (Contributed by Wolf Lammen, 27-Jun-2019.) |
Ref | Expression |
---|---|
wl-nfnae1 | ⊢ Ⅎ𝑥 ¬ ∀𝑦 𝑦 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-nfae1 34319 | . 2 ⊢ Ⅎ𝑥∀𝑦 𝑦 = 𝑥 | |
2 | 1 | nfn 1838 | 1 ⊢ Ⅎ𝑥 ¬ ∀𝑦 𝑦 = 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1520 Ⅎwnf 1765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-10 2112 ax-12 2141 ax-13 2344 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-ex 1762 df-nf 1766 |
This theorem is referenced by: wl-cbvalnaed 34323 wl-2sb6d 34344 |
Copyright terms: Public domain | W3C validator |