Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-nfnae1 Structured version   Visualization version   GIF version

Theorem wl-nfnae1 37508
Description: Unlike nfnae 2436, this specialized theorem avoids ax-11 2154. (Contributed by Wolf Lammen, 27-Jun-2019.)
Assertion
Ref Expression
wl-nfnae1 𝑥 ¬ ∀𝑦 𝑦 = 𝑥

Proof of Theorem wl-nfnae1
StepHypRef Expression
1 wl-nfae1 37507 . 2 𝑥𝑦 𝑦 = 𝑥
21nfn 1854 1 𝑥 ¬ ∀𝑦 𝑦 = 𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1534  wnf 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-10 2138  ax-12 2174  ax-13 2374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1776  df-nf 1780
This theorem is referenced by:  wl-cbvalnaed  37512  wl-2sb6d  37538
  Copyright terms: Public domain W3C validator