![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-nfnae1 | Structured version Visualization version GIF version |
Description: Unlike nfnae 2428, this specialized theorem avoids ax-11 2147. (Contributed by Wolf Lammen, 27-Jun-2019.) |
Ref | Expression |
---|---|
wl-nfnae1 | ⊢ Ⅎ𝑥 ¬ ∀𝑦 𝑦 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-nfae1 37235 | . 2 ⊢ Ⅎ𝑥∀𝑦 𝑦 = 𝑥 | |
2 | 1 | nfn 1853 | 1 ⊢ Ⅎ𝑥 ¬ ∀𝑦 𝑦 = 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1532 Ⅎwnf 1778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-10 2130 ax-12 2167 ax-13 2366 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1775 df-nf 1779 |
This theorem is referenced by: wl-cbvalnaed 37240 wl-2sb6d 37266 |
Copyright terms: Public domain | W3C validator |