Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-ax11-lem4 Structured version   Visualization version   GIF version

Theorem wl-ax11-lem4 34261
Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
Assertion
Ref Expression
wl-ax11-lem4 𝑥(∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑢

Proof of Theorem wl-ax11-lem4
StepHypRef Expression
1 ancom 453 . 2 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) ↔ (¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑢 𝑢 = 𝑦))
2 nfna1 2089 . . 3 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
3 wl-ax11-lem3 34260 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑢 𝑢 = 𝑦)
42, 3nfan1 2129 . 2 𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑢 𝑢 = 𝑦)
51, 4nfxfr 1815 1 𝑥(∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 387  wal 1505  wnf 1746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-10 2079  ax-12 2106  ax-13 2301  ax-wl-11v 34257
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747
This theorem is referenced by:  wl-ax11-lem8  34265
  Copyright terms: Public domain W3C validator