![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-ax11-lem4 | Structured version Visualization version GIF version |
Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
Ref | Expression |
---|---|
wl-ax11-lem4 | ⊢ Ⅎ𝑥(∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 460 | . 2 ⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) ↔ (¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑢 𝑢 = 𝑦)) | |
2 | nfna1 2153 | . . 3 ⊢ Ⅎ𝑥 ¬ ∀𝑥 𝑥 = 𝑦 | |
3 | wl-ax11-lem3 37541 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥∀𝑢 𝑢 = 𝑦) | |
4 | 2, 3 | nfan1 2201 | . 2 ⊢ Ⅎ𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑢 𝑢 = 𝑦) |
5 | 1, 4 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥(∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1535 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2178 ax-13 2380 ax-wl-11v 37538 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 |
This theorem is referenced by: wl-ax11-lem8 37546 |
Copyright terms: Public domain | W3C validator |