Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-ax11-lem5 | Structured version Visualization version GIF version |
Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
Ref | Expression |
---|---|
wl-ax11-lem5 | ⊢ (∀𝑢 𝑢 = 𝑦 → (∀𝑢[𝑢 / 𝑦]𝜑 ↔ ∀𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12r 2245 | . . 3 ⊢ (𝑢 = 𝑦 → ([𝑢 / 𝑦]𝜑 ↔ 𝜑)) | |
2 | 1 | sps 2178 | . 2 ⊢ (∀𝑢 𝑢 = 𝑦 → ([𝑢 / 𝑦]𝜑 ↔ 𝜑)) |
3 | 2 | dral1 2439 | 1 ⊢ (∀𝑢 𝑢 = 𝑦 → (∀𝑢[𝑢 / 𝑦]𝜑 ↔ ∀𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-sb 2068 |
This theorem is referenced by: wl-ax11-lem6 35741 |
Copyright terms: Public domain | W3C validator |