Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-clabtv Structured version   Visualization version   GIF version

Theorem wl-clabtv 35675
Description: Using class abstraction in a context, requiring 𝑥 and 𝜑 disjoint, but based on fewer axioms than wl-clabt 35676. (Contributed by Wolf Lammen, 29-May-2023.)
Assertion
Ref Expression
wl-clabtv (𝜑 → {𝑥𝜓} = {𝑥 ∣ (𝜑𝜓)})
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem wl-clabtv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 biimt 360 . . . 4 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21sbbidv 2083 . . 3 (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥](𝜑𝜓)))
3 df-clab 2716 . . 3 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
4 df-clab 2716 . . 3 (𝑦 ∈ {𝑥 ∣ (𝜑𝜓)} ↔ [𝑦 / 𝑥](𝜑𝜓))
52, 3, 43bitr4g 313 . 2 (𝜑 → (𝑦 ∈ {𝑥𝜓} ↔ 𝑦 ∈ {𝑥 ∣ (𝜑𝜓)}))
65eqrdv 2736 1 (𝜑 → {𝑥𝜓} = {𝑥 ∣ (𝜑𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  [wsb 2068  wcel 2108  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator