Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-dfclab | Structured version Visualization version GIF version |
Description: Rederive df-clab 2716 from wl-clabv 35673. (Contributed by Wolf Lammen, 31-May-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
wl-dfclab | ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel 2818 | . 2 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ {𝑦 ∣ 𝜑})) | |
2 | wl-clabv 35673 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
3 | sbequ 2087 | . . . . 5 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑦]𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
4 | 2, 3 | syl5bb 282 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑)) |
5 | 4 | pm5.32i 574 | . . 3 ⊢ ((𝑧 = 𝑥 ∧ 𝑧 ∈ {𝑦 ∣ 𝜑}) ↔ (𝑧 = 𝑥 ∧ [𝑥 / 𝑦]𝜑)) |
6 | 5 | exbii 1851 | . 2 ⊢ (∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ {𝑦 ∣ 𝜑}) ↔ ∃𝑧(𝑧 = 𝑥 ∧ [𝑥 / 𝑦]𝜑)) |
7 | 19.41v 1954 | . . 3 ⊢ (∃𝑧(𝑧 = 𝑥 ∧ [𝑥 / 𝑦]𝜑) ↔ (∃𝑧 𝑧 = 𝑥 ∧ [𝑥 / 𝑦]𝜑)) | |
8 | ax6ev 1974 | . . . 4 ⊢ ∃𝑧 𝑧 = 𝑥 | |
9 | 8 | biantrur 530 | . . 3 ⊢ ([𝑥 / 𝑦]𝜑 ↔ (∃𝑧 𝑧 = 𝑥 ∧ [𝑥 / 𝑦]𝜑)) |
10 | 7, 9 | bitr4i 277 | . 2 ⊢ (∃𝑧(𝑧 = 𝑥 ∧ [𝑥 / 𝑦]𝜑) ↔ [𝑥 / 𝑦]𝜑) |
11 | 1, 6, 10 | 3bitri 296 | 1 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1783 [wsb 2068 ∈ wcel 2108 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-clel 2817 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |