Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-clabt Structured version   Visualization version   GIF version

Theorem wl-clabt 36973
Description: Using class abstraction in a context. For a version based on fewer axioms see wl-clabtv 36972. (Contributed by Wolf Lammen, 29-May-2023.)
Hypothesis
Ref Expression
wl-clabt.nf 𝑥𝜑
Assertion
Ref Expression
wl-clabt (𝜑 → {𝑥𝜓} = {𝑥 ∣ (𝜑𝜓)})

Proof of Theorem wl-clabt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 wl-clabt.nf . . . 4 𝑥𝜑
2 biimt 360 . . . 4 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
31, 2sbbid 2230 . . 3 (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥](𝜑𝜓)))
4 df-clab 2704 . . 3 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
5 df-clab 2704 . . 3 (𝑦 ∈ {𝑥 ∣ (𝜑𝜓)} ↔ [𝑦 / 𝑥](𝜑𝜓))
63, 4, 53bitr4g 314 . 2 (𝜑 → (𝑦 ∈ {𝑥𝜓} ↔ 𝑦 ∈ {𝑥 ∣ (𝜑𝜓)}))
76eqrdv 2724 1 (𝜑 → {𝑥𝜓} = {𝑥 ∣ (𝜑𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wnf 1777  [wsb 2059  wcel 2098  {cab 2703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator