| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-clabt | Structured version Visualization version GIF version | ||
| Description: Using class abstraction in a context. For a version based on fewer axioms see wl-clabtv 37557. (Contributed by Wolf Lammen, 29-May-2023.) |
| Ref | Expression |
|---|---|
| wl-clabt.nf | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| wl-clabt | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ (𝜑 → 𝜓)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-clabt.nf | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | biimt 360 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
| 3 | 1, 2 | sbbid 2245 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥](𝜑 → 𝜓))) |
| 4 | df-clab 2713 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 5 | df-clab 2713 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜑 → 𝜓)} ↔ [𝑦 / 𝑥](𝜑 → 𝜓)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ 𝑦 ∈ {𝑥 ∣ (𝜑 → 𝜓)})) |
| 7 | 6 | eqrdv 2732 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ (𝜑 → 𝜓)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 Ⅎwnf 1782 [wsb 2063 ∈ wcel 2107 {cab 2712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |