Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-clabt Structured version   Visualization version   GIF version

Theorem wl-clabt 35749
Description: Using class abstraction in a context. For a version based on fewer axioms see wl-clabtv 35748. (Contributed by Wolf Lammen, 29-May-2023.)
Hypothesis
Ref Expression
wl-clabt.nf 𝑥𝜑
Assertion
Ref Expression
wl-clabt (𝜑 → {𝑥𝜓} = {𝑥 ∣ (𝜑𝜓)})

Proof of Theorem wl-clabt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 wl-clabt.nf . . . 4 𝑥𝜑
2 biimt 361 . . . 4 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
31, 2sbbid 2238 . . 3 (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥](𝜑𝜓)))
4 df-clab 2716 . . 3 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
5 df-clab 2716 . . 3 (𝑦 ∈ {𝑥 ∣ (𝜑𝜓)} ↔ [𝑦 / 𝑥](𝜑𝜓))
63, 4, 53bitr4g 314 . 2 (𝜑 → (𝑦 ∈ {𝑥𝜓} ↔ 𝑦 ∈ {𝑥 ∣ (𝜑𝜓)}))
76eqrdv 2736 1 (𝜑 → {𝑥𝜓} = {𝑥 ∣ (𝜑𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wnf 1786  [wsb 2067  wcel 2106  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator