Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-dfrmov Structured version   Visualization version   GIF version

Theorem wl-dfrmov 34398
Description: Alternate definition of restricted "at most one" (df-wl-rmo 34396) when 𝑥 and 𝐴 are disjoint. (Contributed by Wolf Lammen, 28-May-2023.)
Assertion
Ref Expression
wl-dfrmov (∃*(𝑥 : 𝐴)𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem wl-dfrmov
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 wl-dfralv 34385 . . . 4 (∀(𝑥 : 𝐴)(𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦)))
2 impexp 451 . . . . 5 (((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → (𝜑𝑥 = 𝑦)))
32albii 1802 . . . 4 (∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦)))
41, 3bitr4i 279 . . 3 (∀(𝑥 : 𝐴)(𝜑𝑥 = 𝑦) ↔ ∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦))
54exbii 1830 . 2 (∃𝑦∀(𝑥 : 𝐴)(𝜑𝑥 = 𝑦) ↔ ∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦))
6 df-wl-rmo 34396 . 2 (∃*(𝑥 : 𝐴)𝜑 ↔ ∃𝑦∀(𝑥 : 𝐴)(𝜑𝑥 = 𝑦))
7 df-mo 2575 . 2 (∃*𝑥(𝑥𝐴𝜑) ↔ ∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦))
85, 6, 73bitr4i 304 1 (∃*(𝑥 : 𝐴)𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1520  wex 1762  wcel 2080  ∃*wmo 2573  wl-ral 34375  ∃*wl-rmo 34377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-11 2125
This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1763  df-mo 2575  df-clel 2862  df-wl-ral 34380  df-wl-rmo 34396
This theorem is referenced by:  wl-dfreuv  34402
  Copyright terms: Public domain W3C validator