![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-dfrmov | Structured version Visualization version GIF version |
Description: Alternate definition of restricted "at most one" (df-wl-rmo 34396) when 𝑥 and 𝐴 are disjoint. (Contributed by Wolf Lammen, 28-May-2023.) |
Ref | Expression |
---|---|
wl-dfrmov | ⊢ (∃*(𝑥 : 𝐴)𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-dfralv 34385 | . . . 4 ⊢ (∀(𝑥 : 𝐴)(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) | |
2 | impexp 451 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) | |
3 | 2 | albii 1802 | . . . 4 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) |
4 | 1, 3 | bitr4i 279 | . . 3 ⊢ (∀(𝑥 : 𝐴)(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦)) |
5 | 4 | exbii 1830 | . 2 ⊢ (∃𝑦∀(𝑥 : 𝐴)(𝜑 → 𝑥 = 𝑦) ↔ ∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦)) |
6 | df-wl-rmo 34396 | . 2 ⊢ (∃*(𝑥 : 𝐴)𝜑 ↔ ∃𝑦∀(𝑥 : 𝐴)(𝜑 → 𝑥 = 𝑦)) | |
7 | df-mo 2575 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦)) | |
8 | 5, 6, 7 | 3bitr4i 304 | 1 ⊢ (∃*(𝑥 : 𝐴)𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∀wal 1520 ∃wex 1762 ∈ wcel 2080 ∃*wmo 2573 ∀wl-ral 34375 ∃*wl-rmo 34377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-11 2125 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1763 df-mo 2575 df-clel 2862 df-wl-ral 34380 df-wl-rmo 34396 |
This theorem is referenced by: wl-dfreuv 34402 |
Copyright terms: Public domain | W3C validator |