Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sbcom2d-lem2 Structured version   Visualization version   GIF version

Theorem wl-sbcom2d-lem2 35715
Description: Lemma used to prove wl-sbcom2d 35716. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.)
Assertion
Ref Expression
wl-sbcom2d-lem2 (¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∀𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) → 𝜑)))
Distinct variable groups:   𝑣,𝑢,𝑥   𝑦,𝑢,𝑣   𝜑,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem wl-sbcom2d-lem2
StepHypRef Expression
1 id 22 . 2 (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑦 = 𝑥)
2 naev 2063 . 2 (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑦 = 𝑣)
3 naev 2063 . 2 (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑦 = 𝑢)
4 naev 2063 . 2 (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑥 𝑥 = 𝑢)
51, 2, 3, 4wl-2sb6d 35713 1 (¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∀𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) → 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by:  wl-sbcom2d  35716
  Copyright terms: Public domain W3C validator