![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sbcom2d-lem2 | Structured version Visualization version GIF version |
Description: Lemma used to prove wl-sbcom2d 37515. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
wl-sbcom2d-lem2 | ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑦 = 𝑥) | |
2 | naev 2060 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑦 = 𝑣) | |
3 | naev 2060 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑦 = 𝑢) | |
4 | naev 2060 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑥 𝑥 = 𝑢) | |
5 | 1, 2, 3, 4 | wl-2sb6d 37512 | 1 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 |
This theorem is referenced by: wl-sbcom2d 37515 |
Copyright terms: Public domain | W3C validator |