Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sbcom2d-lem2 | Structured version Visualization version GIF version |
Description: Lemma used to prove wl-sbcom2d 35716. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
wl-sbcom2d-lem2 | ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑦 = 𝑥) | |
2 | naev 2063 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑦 = 𝑣) | |
3 | naev 2063 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑦 = 𝑢) | |
4 | naev 2063 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑥 𝑥 = 𝑢) | |
5 | 1, 2, 3, 4 | wl-2sb6d 35713 | 1 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 |
This theorem is referenced by: wl-sbcom2d 35716 |
Copyright terms: Public domain | W3C validator |