| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sbcom2d-lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma used to prove wl-sbcom2d 37595. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| wl-sbcom2d-lem2 | ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑦 = 𝑥) | |
| 2 | naev 2063 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑦 = 𝑣) | |
| 3 | naev 2063 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑦 = 𝑢) | |
| 4 | naev 2063 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑥 𝑥 = 𝑢) | |
| 5 | 1, 2, 3, 4 | wl-2sb6d 37592 | 1 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 |
| This theorem is referenced by: wl-sbcom2d 37595 |
| Copyright terms: Public domain | W3C validator |