Proof of Theorem wl-2sb6d
Step | Hyp | Ref
| Expression |
1 | | wl-2sb6d.4 |
. 2
⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑧) |
2 | | wl-2sb6d.2 |
. 2
⊢ (𝜑 → ¬ ∀𝑦 𝑦 = 𝑤) |
3 | | wl-2sb6d.1 |
. . 3
⊢ (𝜑 → ¬ ∀𝑦 𝑦 = 𝑥) |
4 | | wl-2sb6d.3 |
. . 3
⊢ (𝜑 → ¬ ∀𝑦 𝑦 = 𝑧) |
5 | 3, 4 | jca 512 |
. 2
⊢ (𝜑 → (¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧)) |
6 | | sb4b 2475 |
. . 3
⊢ (¬
∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ↔ ∀𝑥(𝑥 = 𝑧 → [𝑤 / 𝑦]𝜓))) |
7 | | nfnae 2434 |
. . . . 5
⊢
Ⅎ𝑥 ¬
∀𝑦 𝑦 = 𝑤 |
8 | | wl-nfnae1 35687 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑦 𝑦 = 𝑥 |
9 | | nfnae 2434 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑦 𝑦 = 𝑧 |
10 | 8, 9 | nfan 1902 |
. . . . 5
⊢
Ⅎ𝑥(¬
∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) |
11 | 7, 10 | nfan 1902 |
. . . 4
⊢
Ⅎ𝑥(¬
∀𝑦 𝑦 = 𝑤 ∧ (¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧)) |
12 | | sb4b 2475 |
. . . . . 6
⊢ (¬
∀𝑦 𝑦 = 𝑤 → ([𝑤 / 𝑦]𝜓 ↔ ∀𝑦(𝑦 = 𝑤 → 𝜓))) |
13 | 12 | imbi2d 341 |
. . . . 5
⊢ (¬
∀𝑦 𝑦 = 𝑤 → ((𝑥 = 𝑧 → [𝑤 / 𝑦]𝜓) ↔ (𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜓)))) |
14 | | impexp 451 |
. . . . . . 7
⊢ (((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜓) ↔ (𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜓))) |
15 | 14 | albii 1822 |
. . . . . 6
⊢
(∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜓) ↔ ∀𝑦(𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜓))) |
16 | | nfeqf 2381 |
. . . . . . 7
⊢ ((¬
∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦 𝑥 = 𝑧) |
17 | | 19.21t 2199 |
. . . . . . 7
⊢
(Ⅎ𝑦 𝑥 = 𝑧 → (∀𝑦(𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜓)) ↔ (𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜓)))) |
18 | 16, 17 | syl 17 |
. . . . . 6
⊢ ((¬
∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑦(𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜓)) ↔ (𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜓)))) |
19 | 15, 18 | bitr2id 284 |
. . . . 5
⊢ ((¬
∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ((𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜓)) ↔ ∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜓))) |
20 | 13, 19 | sylan9bb 510 |
. . . 4
⊢ ((¬
∀𝑦 𝑦 = 𝑤 ∧ (¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧)) → ((𝑥 = 𝑧 → [𝑤 / 𝑦]𝜓) ↔ ∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜓))) |
21 | 11, 20 | albid 2215 |
. . 3
⊢ ((¬
∀𝑦 𝑦 = 𝑤 ∧ (¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧)) → (∀𝑥(𝑥 = 𝑧 → [𝑤 / 𝑦]𝜓) ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜓))) |
22 | 6, 21 | sylan9bb 510 |
. 2
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ (¬ ∀𝑦 𝑦 = 𝑤 ∧ (¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧))) → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜓))) |
23 | 1, 2, 5, 22 | syl12anc 834 |
1
⊢ (𝜑 → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜓))) |