Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sbcom2d-lem1 | Structured version Visualization version GIF version |
Description: Lemma used to prove wl-sbcom2d 35695. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
wl-sbcom2d-lem1 | ⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → (¬ ∀𝑥 𝑥 = 𝑤 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfna1 2152 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ ∀𝑥 𝑥 = 𝑤 | |
2 | nfeqf2 2378 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑤 → Ⅎ𝑥 𝑣 = 𝑤) | |
3 | 1, 2 | nfan1 2196 | . . . . 5 ⊢ Ⅎ𝑥(¬ ∀𝑥 𝑥 = 𝑤 ∧ 𝑣 = 𝑤) |
4 | sbequ 2089 | . . . . . 6 ⊢ (𝑣 = 𝑤 → ([𝑣 / 𝑧]𝜑 ↔ [𝑤 / 𝑧]𝜑)) | |
5 | 4 | adantl 481 | . . . . 5 ⊢ ((¬ ∀𝑥 𝑥 = 𝑤 ∧ 𝑣 = 𝑤) → ([𝑣 / 𝑧]𝜑 ↔ [𝑤 / 𝑧]𝜑)) |
6 | 3, 5 | sbbid 2241 | . . . 4 ⊢ ((¬ ∀𝑥 𝑥 = 𝑤 ∧ 𝑣 = 𝑤) → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑢 / 𝑥][𝑤 / 𝑧]𝜑)) |
7 | 6 | ancoms 458 | . . 3 ⊢ ((𝑣 = 𝑤 ∧ ¬ ∀𝑥 𝑥 = 𝑤) → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑢 / 𝑥][𝑤 / 𝑧]𝜑)) |
8 | sbequ 2089 | . . 3 ⊢ (𝑢 = 𝑦 → ([𝑢 / 𝑥][𝑤 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)) | |
9 | 7, 8 | sylan9bbr 510 | . 2 ⊢ ((𝑢 = 𝑦 ∧ (𝑣 = 𝑤 ∧ ¬ ∀𝑥 𝑥 = 𝑤)) → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)) |
10 | 9 | expr 456 | 1 ⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → (¬ ∀𝑥 𝑥 = 𝑤 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1539 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-10 2140 ax-12 2174 ax-13 2373 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1786 df-nf 1790 df-sb 2071 |
This theorem is referenced by: wl-sbcom2d 35695 |
Copyright terms: Public domain | W3C validator |