| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sbcom2d-lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma used to prove wl-sbcom2d 37562. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| wl-sbcom2d-lem1 | ⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → (¬ ∀𝑥 𝑥 = 𝑤 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfna1 2152 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ ∀𝑥 𝑥 = 𝑤 | |
| 2 | nfeqf2 2382 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑤 → Ⅎ𝑥 𝑣 = 𝑤) | |
| 3 | 1, 2 | nfan1 2200 | . . . . 5 ⊢ Ⅎ𝑥(¬ ∀𝑥 𝑥 = 𝑤 ∧ 𝑣 = 𝑤) |
| 4 | sbequ 2083 | . . . . . 6 ⊢ (𝑣 = 𝑤 → ([𝑣 / 𝑧]𝜑 ↔ [𝑤 / 𝑧]𝜑)) | |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((¬ ∀𝑥 𝑥 = 𝑤 ∧ 𝑣 = 𝑤) → ([𝑣 / 𝑧]𝜑 ↔ [𝑤 / 𝑧]𝜑)) |
| 6 | 3, 5 | sbbid 2246 | . . . 4 ⊢ ((¬ ∀𝑥 𝑥 = 𝑤 ∧ 𝑣 = 𝑤) → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑢 / 𝑥][𝑤 / 𝑧]𝜑)) |
| 7 | 6 | ancoms 458 | . . 3 ⊢ ((𝑣 = 𝑤 ∧ ¬ ∀𝑥 𝑥 = 𝑤) → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑢 / 𝑥][𝑤 / 𝑧]𝜑)) |
| 8 | sbequ 2083 | . . 3 ⊢ (𝑢 = 𝑦 → ([𝑢 / 𝑥][𝑤 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)) | |
| 9 | 7, 8 | sylan9bbr 510 | . 2 ⊢ ((𝑢 = 𝑦 ∧ (𝑣 = 𝑤 ∧ ¬ ∀𝑥 𝑥 = 𝑤)) → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)) |
| 10 | 9 | expr 456 | 1 ⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → (¬ ∀𝑥 𝑥 = 𝑤 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: wl-sbcom2d 37562 |
| Copyright terms: Public domain | W3C validator |