Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sbcom2d-lem1 Structured version   Visualization version   GIF version

Theorem wl-sbcom2d-lem1 35240
Description: Lemma used to prove wl-sbcom2d 35242. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.)
Assertion
Ref Expression
wl-sbcom2d-lem1 ((𝑢 = 𝑦𝑣 = 𝑤) → (¬ ∀𝑥 𝑥 = 𝑤 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)))
Distinct variable groups:   𝑣,𝑢,𝑥   𝑦,𝑢,𝑣   𝑤,𝑢,𝑣   𝑧,𝑢,𝑣   𝜑,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wl-sbcom2d-lem1
StepHypRef Expression
1 nfna1 2153 . . . . . 6 𝑥 ¬ ∀𝑥 𝑥 = 𝑤
2 nfeqf2 2384 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑤 → Ⅎ𝑥 𝑣 = 𝑤)
31, 2nfan1 2198 . . . . 5 𝑥(¬ ∀𝑥 𝑥 = 𝑤𝑣 = 𝑤)
4 sbequ 2088 . . . . . 6 (𝑣 = 𝑤 → ([𝑣 / 𝑧]𝜑 ↔ [𝑤 / 𝑧]𝜑))
54adantl 485 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑤𝑣 = 𝑤) → ([𝑣 / 𝑧]𝜑 ↔ [𝑤 / 𝑧]𝜑))
63, 5sbbid 2244 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑤𝑣 = 𝑤) → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑢 / 𝑥][𝑤 / 𝑧]𝜑))
76ancoms 462 . . 3 ((𝑣 = 𝑤 ∧ ¬ ∀𝑥 𝑥 = 𝑤) → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑢 / 𝑥][𝑤 / 𝑧]𝜑))
8 sbequ 2088 . . 3 (𝑢 = 𝑦 → ([𝑢 / 𝑥][𝑤 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑))
97, 8sylan9bbr 514 . 2 ((𝑢 = 𝑦 ∧ (𝑣 = 𝑤 ∧ ¬ ∀𝑥 𝑥 = 𝑤)) → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑))
109expr 460 1 ((𝑢 = 𝑦𝑣 = 𝑤) → (¬ ∀𝑥 𝑥 = 𝑤 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536  [wsb 2069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2142  ax-12 2175  ax-13 2379
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2070
This theorem is referenced by:  wl-sbcom2d  35242
  Copyright terms: Public domain W3C validator