Step | Hyp | Ref
| Expression |
1 | | ax6ev 1974 |
. 2
⊢
∃𝑢 𝑢 = 𝑦 |
2 | | ax6ev 1974 |
. 2
⊢
∃𝑣 𝑣 = 𝑤 |
3 | | wl-sbcom2d.2 |
. . . . . . . 8
⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑧) |
4 | | wl-sbcom2d-lem2 35642 |
. . . . . . . . . . 11
⊢ (¬
∀𝑧 𝑧 = 𝑥 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜓 ↔ ∀𝑥∀𝑧((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜓))) |
5 | | alcom 2158 |
. . . . . . . . . . . 12
⊢
(∀𝑥∀𝑧((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜓) ↔ ∀𝑧∀𝑥((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜓)) |
6 | | ancomst 464 |
. . . . . . . . . . . . 13
⊢ (((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜓) ↔ ((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜓)) |
7 | 6 | 2albii 1824 |
. . . . . . . . . . . 12
⊢
(∀𝑧∀𝑥((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜓) ↔ ∀𝑧∀𝑥((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜓)) |
8 | 5, 7 | bitri 274 |
. . . . . . . . . . 11
⊢
(∀𝑥∀𝑧((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜓) ↔ ∀𝑧∀𝑥((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜓)) |
9 | 4, 8 | bitrdi 286 |
. . . . . . . . . 10
⊢ (¬
∀𝑧 𝑧 = 𝑥 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜓 ↔ ∀𝑧∀𝑥((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜓))) |
10 | 9 | naecoms 2429 |
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑧 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜓 ↔ ∀𝑧∀𝑥((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜓))) |
11 | | wl-sbcom2d-lem2 35642 |
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑧 → ([𝑣 / 𝑧][𝑢 / 𝑥]𝜓 ↔ ∀𝑧∀𝑥((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜓))) |
12 | 10, 11 | bitr4d 281 |
. . . . . . . 8
⊢ (¬
∀𝑥 𝑥 = 𝑧 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜓 ↔ [𝑣 / 𝑧][𝑢 / 𝑥]𝜓)) |
13 | 3, 12 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜓 ↔ [𝑣 / 𝑧][𝑢 / 𝑥]𝜓)) |
14 | 13 | adantl 481 |
. . . . . 6
⊢ (((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) ∧ 𝜑) → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜓 ↔ [𝑣 / 𝑧][𝑢 / 𝑥]𝜓)) |
15 | | wl-sbcom2d.1 |
. . . . . . . 8
⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑤) |
16 | | wl-sbcom2d-lem1 35641 |
. . . . . . . 8
⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → (¬ ∀𝑥 𝑥 = 𝑤 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜓 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜓))) |
17 | 15, 16 | syl5 34 |
. . . . . . 7
⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → (𝜑 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜓 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜓))) |
18 | 17 | imp 406 |
. . . . . 6
⊢ (((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) ∧ 𝜑) → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜓 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜓)) |
19 | | wl-sbcom2d.3 |
. . . . . . . . 9
⊢ (𝜑 → ¬ ∀𝑧 𝑧 = 𝑦) |
20 | | wl-sbcom2d-lem1 35641 |
. . . . . . . . 9
⊢ ((𝑣 = 𝑤 ∧ 𝑢 = 𝑦) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑣 / 𝑧][𝑢 / 𝑥]𝜓 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜓))) |
21 | 19, 20 | syl5 34 |
. . . . . . . 8
⊢ ((𝑣 = 𝑤 ∧ 𝑢 = 𝑦) → (𝜑 → ([𝑣 / 𝑧][𝑢 / 𝑥]𝜓 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜓))) |
22 | 21 | ancoms 458 |
. . . . . . 7
⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → (𝜑 → ([𝑣 / 𝑧][𝑢 / 𝑥]𝜓 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜓))) |
23 | 22 | imp 406 |
. . . . . 6
⊢ (((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) ∧ 𝜑) → ([𝑣 / 𝑧][𝑢 / 𝑥]𝜓 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜓)) |
24 | 14, 18, 23 | 3bitr3rd 309 |
. . . . 5
⊢ (((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) ∧ 𝜑) → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜓)) |
25 | 24 | exp31 419 |
. . . 4
⊢ (𝑢 = 𝑦 → (𝑣 = 𝑤 → (𝜑 → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜓)))) |
26 | 25 | exlimdv 1937 |
. . 3
⊢ (𝑢 = 𝑦 → (∃𝑣 𝑣 = 𝑤 → (𝜑 → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜓)))) |
27 | 26 | exlimiv 1934 |
. 2
⊢
(∃𝑢 𝑢 = 𝑦 → (∃𝑣 𝑣 = 𝑤 → (𝜑 → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜓)))) |
28 | 1, 2, 27 | mp2 9 |
1
⊢ (𝜑 → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜓)) |