NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  0cnsuc Unicode version

Theorem 0cnsuc 4402
Description: Cardinal zero is not a successor. Compare Theorem X.1.2 of [Rosser] p. 275. (Contributed by SF, 14-Jan-2015.)
Assertion
Ref Expression
0cnsuc 1c 0c

Proof of Theorem 0cnsuc
StepHypRef Expression
1 0nelsuc 4401 . . 3 1c
2 0ex 4111 . . . . . 6
32snid 3761 . . . . 5
4 df-0c 4378 . . . . 5 0c
53, 4eleqtrri 2426 . . . 4 0c
6 eleq2 2414 . . . 4 1c 0c 1c 0c
75, 6mpbiri 224 . . 3 1c 0c 1c
81, 7mto 167 . 2 1c 0c
9 df-ne 2519 . 2 1c 0c 1c 0c
108, 9mpbir 200 1 1c 0c
Colors of variables: wff setvar class
Syntax hints:   wn 3   wceq 1642   wcel 1710   wne 2517  c0 3551  csn 3738  1cc1c 4135  0cc0c 4375   cplc 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-1c 4137  df-0c 4378  df-addc 4379
This theorem is referenced by:  peano3  4405  ltfinirr  4458  evenodddisj  4517  0cnelphi  4598  addceq0  6220  1ne0c  6242  2ne0c  6243  nnltp1c  6263  nnc3n3p1  6279  nchoicelem12  6301  nchoicelem14  6303  nchoicelem17  6306  fnfreclem2  6319  fnfreclem3  6320
  Copyright terms: Public domain W3C validator