NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nchoicelem12 Unicode version

Theorem nchoicelem12 6301
Description: Lemma for nchoice 6309. If the T-raising of a cardinal yields a finite special set, then so does the initial set. Theorem 7.1 of [Specker] p. 974. (Contributed by SF, 18-Mar-2015.)
Assertion
Ref Expression
nchoicelem12 NC Spac Tc Fin Spac Fin

Proof of Theorem nchoicelem12
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 finnc 6244 . . . 4 Spac Tc Fin Nc Spac Tc Nn
2 risset 2662 . . . 4 Nc Spac Tc Nn Nn Nc Spac Tc
31, 2bitri 240 . . 3 Spac Tc Fin Nn Nc Spac Tc
4 nchoicelem11 6300 . . . . . . 7 NC Nc Spac Tc Nc Spac Nn
5 eqeq1 2359 . . . . . . . . 9 0c Nc Spac Tc 0c Nc Spac Tc
65imbi1d 308 . . . . . . . 8 0c Nc Spac Tc Nc Spac Nn 0c Nc Spac Tc Nc Spac Nn
76ralbidv 2635 . . . . . . 7 0c NC Nc Spac Tc Nc Spac Nn NC 0c Nc Spac Tc Nc Spac Nn
8 eqeq1 2359 . . . . . . . . 9 Nc Spac Tc Nc Spac Tc
98imbi1d 308 . . . . . . . 8 Nc Spac Tc Nc Spac Nn Nc Spac Tc Nc Spac Nn
109ralbidv 2635 . . . . . . 7 NC Nc Spac Tc Nc Spac Nn NC Nc Spac Tc Nc Spac Nn
11 eqeq1 2359 . . . . . . . . . 10 1c Nc Spac Tc 1c Nc Spac Tc
1211imbi1d 308 . . . . . . . . 9 1c Nc Spac Tc Nc Spac Nn 1c Nc Spac Tc Nc Spac Nn
1312ralbidv 2635 . . . . . . . 8 1c NC Nc Spac Tc Nc Spac Nn NC 1c Nc Spac Tc Nc Spac Nn
14 tceq 6159 . . . . . . . . . . . . 13 Tc Tc
1514fveq2d 5333 . . . . . . . . . . . 12 Spac Tc Spac Tc
1615nceqd 6111 . . . . . . . . . . 11 Nc Spac Tc Nc Spac Tc
1716eqeq2d 2364 . . . . . . . . . 10 1c Nc Spac Tc 1c Nc Spac Tc
18 fveq2 5329 . . . . . . . . . . . 12 Spac Spac
1918nceqd 6111 . . . . . . . . . . 11 Nc Spac Nc Spac
2019eleq1d 2419 . . . . . . . . . 10 Nc Spac Nn Nc Spac Nn
2117, 20imbi12d 311 . . . . . . . . 9 1c Nc Spac Tc Nc Spac Nn 1c Nc Spac Tc Nc Spac Nn
2221cbvralv 2836 . . . . . . . 8 NC 1c Nc Spac Tc Nc Spac Nn NC 1c Nc Spac Tc Nc Spac Nn
2313, 22syl6bb 252 . . . . . . 7 1c NC Nc Spac Tc Nc Spac Nn NC 1c Nc Spac Tc Nc Spac Nn
24 eqeq1 2359 . . . . . . . . 9 Nc Spac Tc Nc Spac Tc
2524imbi1d 308 . . . . . . . 8 Nc Spac Tc Nc Spac Nn Nc Spac Tc Nc Spac Nn
2625ralbidv 2635 . . . . . . 7 NC Nc Spac Tc Nc Spac Nn NC Nc Spac Tc Nc Spac Nn
27 tccl 6161 . . . . . . . . . . . . 13 NC Tc NC
28 te0c 6238 . . . . . . . . . . . . 13 NC Tc c 0c NC
29 nchoicelem7 6296 . . . . . . . . . . . . 13 Tc NC Tc c 0c NC Nc Spac Tc Nc Spac 2cc Tc 1c
3027, 28, 29syl2anc 642 . . . . . . . . . . . 12 NC Nc Spac Tc Nc Spac 2cc Tc 1c
31 0cnsuc 4402 . . . . . . . . . . . . 13 Nc Spac 2cc Tc 1c 0c
3231a1i 10 . . . . . . . . . . . 12 NC Nc Spac 2cc Tc 1c 0c
3330, 32eqnetrd 2535 . . . . . . . . . . 11 NC Nc Spac Tc 0c
3433necomd 2600 . . . . . . . . . 10 NC 0c Nc Spac Tc
35 df-ne 2519 . . . . . . . . . 10 0c Nc Spac Tc 0c Nc Spac Tc
3634, 35sylib 188 . . . . . . . . 9 NC 0c Nc Spac Tc
3736pm2.21d 98 . . . . . . . 8 NC 0c Nc Spac Tc Nc Spac Nn
3837rgen 2680 . . . . . . 7 NC 0c Nc Spac Tc Nc Spac Nn
39 2nnc 6168 . . . . . . . . . . . . . . . . 17 2c Nn
40 ceclnn1 6190 . . . . . . . . . . . . . . . . 17 2c Nn NC c 0c NC 2cc NC
4139, 40mp3an1 1264 . . . . . . . . . . . . . . . 16 NC c 0c NC 2cc NC
42 tceq 6159 . . . . . . . . . . . . . . . . . . . . 21 2cc Tc Tc 2cc
4342fveq2d 5333 . . . . . . . . . . . . . . . . . . . 20 2cc Spac Tc Spac Tc 2cc
4443nceqd 6111 . . . . . . . . . . . . . . . . . . 19 2cc Nc Spac Tc Nc Spac Tc 2cc
4544eqeq2d 2364 . . . . . . . . . . . . . . . . . 18 2cc Nc Spac Tc Nc Spac Tc 2cc
46 fveq2 5329 . . . . . . . . . . . . . . . . . . . 20 2cc Spac Spac 2cc
4746nceqd 6111 . . . . . . . . . . . . . . . . . . 19 2cc Nc Spac Nc Spac 2cc
4847eleq1d 2419 . . . . . . . . . . . . . . . . . 18 2cc Nc Spac Nn Nc Spac 2cc Nn
4945, 48imbi12d 311 . . . . . . . . . . . . . . . . 17 2cc Nc Spac Tc Nc Spac Nn Nc Spac Tc 2cc Nc Spac 2cc Nn
5049rspcv 2952 . . . . . . . . . . . . . . . 16 2cc NC NC Nc Spac Tc Nc Spac Nn Nc Spac Tc 2cc Nc Spac 2cc Nn
5141, 50syl 15 . . . . . . . . . . . . . . 15 NC c 0c NC NC Nc Spac Tc Nc Spac Nn Nc Spac Tc 2cc Nc Spac 2cc Nn
5251ancoms 439 . . . . . . . . . . . . . 14 c 0c NC NC NC Nc Spac Tc Nc Spac Nn Nc Spac Tc 2cc Nc Spac 2cc Nn
5352adantrl 696 . . . . . . . . . . . . 13 c 0c NC Nn NC NC Nc Spac Tc Nc Spac Nn Nc Spac Tc 2cc Nc Spac 2cc Nn
54 tccl 6161 . . . . . . . . . . . . . . . . . . . . . . 23 NC Tc NC
55 te0c 6238 . . . . . . . . . . . . . . . . . . . . . . 23 NC Tc c 0c NC
56 nchoicelem7 6296 . . . . . . . . . . . . . . . . . . . . . . 23 Tc NC Tc c 0c NC Nc Spac Tc Nc Spac 2cc Tc 1c
5754, 55, 56syl2anc 642 . . . . . . . . . . . . . . . . . . . . . 22 NC Nc Spac Tc Nc Spac 2cc Tc 1c
5857adantl 452 . . . . . . . . . . . . . . . . . . . . 21 Nn NC Nc Spac Tc Nc Spac 2cc Tc 1c
5958adantl 452 . . . . . . . . . . . . . . . . . . . 20 c 0c NC Nn NC Nc Spac Tc Nc Spac 2cc Tc 1c
6059eqeq2d 2364 . . . . . . . . . . . . . . . . . . 19 c 0c NC Nn NC 1c Nc Spac Tc 1c Nc Spac 2cc Tc 1c
61 nnnc 6147 . . . . . . . . . . . . . . . . . . . . . . 23 Nn NC
6261adantr 451 . . . . . . . . . . . . . . . . . . . . . 22 Nn NC NC
6362adantl 452 . . . . . . . . . . . . . . . . . . . . 21 c 0c NC Nn NC NC
64 fvex 5340 . . . . . . . . . . . . . . . . . . . . . 22 Spac 2cc Tc
6564ncelncsi 6122 . . . . . . . . . . . . . . . . . . . . 21 Nc Spac 2cc Tc NC
66 peano4nc 6151 . . . . . . . . . . . . . . . . . . . . 21 NC Nc Spac 2cc Tc NC 1c Nc Spac 2cc Tc 1c Nc Spac 2cc Tc
6763, 65, 66sylancl 643 . . . . . . . . . . . . . . . . . . . 20 c 0c NC Nn NC 1c Nc Spac 2cc Tc 1c Nc Spac 2cc Tc
68 tce2 6237 . . . . . . . . . . . . . . . . . . . . . . . . . 26 NC c 0c NC Tc 2cc 2cc Tc
6968ancoms 439 . . . . . . . . . . . . . . . . . . . . . . . . 25 c 0c NC NC Tc 2cc 2cc Tc
7069adantrl 696 . . . . . . . . . . . . . . . . . . . . . . . 24 c 0c NC Nn NC Tc 2cc 2cc Tc
7170fveq2d 5333 . . . . . . . . . . . . . . . . . . . . . . 23 c 0c NC Nn NC Spac Tc 2cc Spac 2cc Tc
7271nceqd 6111 . . . . . . . . . . . . . . . . . . . . . 22 c 0c NC Nn NC Nc Spac Tc 2cc Nc Spac 2cc Tc
7372eqeq2d 2364 . . . . . . . . . . . . . . . . . . . . 21 c 0c NC Nn NC Nc Spac Tc 2cc Nc Spac 2cc Tc
7473biimprd 214 . . . . . . . . . . . . . . . . . . . 20 c 0c NC Nn NC Nc Spac 2cc Tc Nc Spac Tc 2cc
7567, 74sylbid 206 . . . . . . . . . . . . . . . . . . 19 c 0c NC Nn NC 1c Nc Spac 2cc Tc 1c Nc Spac Tc 2cc
7660, 75sylbid 206 . . . . . . . . . . . . . . . . . 18 c 0c NC Nn NC 1c Nc Spac Tc Nc Spac Tc 2cc
7776imim1d 69 . . . . . . . . . . . . . . . . 17 c 0c NC Nn NC Nc Spac Tc 2cc Nc Spac 2cc Nn 1c Nc Spac Tc Nc Spac 2cc Nn
7877imp 418 . . . . . . . . . . . . . . . 16 c 0c NC Nn NC Nc Spac Tc 2cc Nc Spac 2cc Nn 1c Nc Spac Tc Nc Spac 2cc Nn
79 peano2 4404 . . . . . . . . . . . . . . . 16 Nc Spac 2cc Nn Nc Spac 2cc 1c Nn
8078, 79syl6 29 . . . . . . . . . . . . . . 15 c 0c NC Nn NC Nc Spac Tc 2cc Nc Spac 2cc Nn 1c Nc Spac Tc Nc Spac 2cc 1c Nn
81 nchoicelem7 6296 . . . . . . . . . . . . . . . . . . 19 NC c 0c NC Nc Spac Nc Spac 2cc 1c
8281ancoms 439 . . . . . . . . . . . . . . . . . 18 c 0c NC NC Nc Spac Nc Spac 2cc 1c
8382adantrl 696 . . . . . . . . . . . . . . . . 17 c 0c NC Nn NC Nc Spac Nc Spac 2cc 1c
8483adantr 451 . . . . . . . . . . . . . . . 16 c 0c NC Nn NC Nc Spac Tc 2cc Nc Spac 2cc Nn Nc Spac Nc Spac 2cc 1c
8584eleq1d 2419 . . . . . . . . . . . . . . 15 c 0c NC Nn NC Nc Spac Tc 2cc Nc Spac 2cc Nn Nc Spac Nn Nc Spac 2cc 1c Nn
8680, 85sylibrd 225 . . . . . . . . . . . . . 14 c 0c NC Nn NC Nc Spac Tc 2cc Nc Spac 2cc Nn 1c Nc Spac Tc Nc Spac Nn
8786ex 423 . . . . . . . . . . . . 13 c 0c NC Nn NC Nc Spac Tc 2cc Nc Spac 2cc Nn 1c Nc Spac Tc Nc Spac Nn
8853, 87syld 40 . . . . . . . . . . . 12 c 0c NC Nn NC NC Nc Spac Tc Nc Spac Nn 1c Nc Spac Tc Nc Spac Nn
8988expimpd 586 . . . . . . . . . . 11 c 0c NC Nn NC NC Nc Spac Tc Nc Spac Nn 1c Nc Spac Tc Nc Spac Nn
90 nchoicelem3 6292 . . . . . . . . . . . . . . . . 17 NC c 0c NC Spac
9190nceqd 6111 . . . . . . . . . . . . . . . 16 NC c 0c NC Nc Spac Nc
92 vex 2863 . . . . . . . . . . . . . . . . . 18
9392df1c3 6141 . . . . . . . . . . . . . . . . 17 1c Nc
94 1cnnc 4409 . . . . . . . . . . . . . . . . 17 1c Nn
9593, 94eqeltrri 2424 . . . . . . . . . . . . . . . 16 Nc Nn
9691, 95syl6eqel 2441 . . . . . . . . . . . . . . 15 NC c 0c NC Nc Spac Nn
9796a1d 22 . . . . . . . . . . . . . 14 NC c 0c NC 1c Nc Spac Tc Nc Spac Nn
9897expcom 424 . . . . . . . . . . . . 13 c 0c NC NC 1c Nc Spac Tc Nc Spac Nn
9998adantld 453 . . . . . . . . . . . 12 c 0c NC Nn NC 1c Nc Spac Tc Nc Spac Nn
10099adantrd 454 . . . . . . . . . . 11 c 0c NC Nn NC NC Nc Spac Tc Nc Spac Nn 1c Nc Spac Tc Nc Spac Nn
10189, 100pm2.61i 156 . . . . . . . . . 10 Nn NC NC Nc Spac Tc Nc Spac Nn 1c Nc Spac Tc Nc Spac Nn
102101an32s 779 . . . . . . . . 9 Nn NC Nc Spac Tc Nc Spac Nn NC 1c Nc Spac Tc Nc Spac Nn
103102ralrimiva 2698 . . . . . . . 8 Nn NC Nc Spac Tc Nc Spac Nn NC 1c Nc Spac Tc Nc Spac Nn
104103ex 423 . . . . . . 7 Nn NC Nc Spac Tc Nc Spac Nn NC 1c Nc Spac Tc Nc Spac Nn
1054, 7, 10, 23, 26, 38, 104finds 4412 . . . . . 6 Nn NC Nc Spac Tc Nc Spac Nn
106 tceq 6159 . . . . . . . . . . 11 Tc Tc
107106fveq2d 5333 . . . . . . . . . 10 Spac Tc Spac Tc
108107nceqd 6111 . . . . . . . . 9 Nc Spac Tc Nc Spac Tc
109108eqeq2d 2364 . . . . . . . 8 Nc Spac Tc Nc Spac Tc
110 fveq2 5329 . . . . . . . . . . 11 Spac Spac
111110nceqd 6111 . . . . . . . . . 10 Nc Spac Nc Spac
112111eleq1d 2419 . . . . . . . . 9 Nc Spac Nn Nc Spac Nn
113 finnc 6244 . . . . . . . . 9 Spac Fin Nc Spac Nn
114112, 113syl6bbr 254 . . . . . . . 8 Nc Spac Nn Spac Fin
115109, 114imbi12d 311 . . . . . . 7 Nc Spac Tc Nc Spac Nn Nc Spac Tc Spac Fin
116115rspccv 2953 . . . . . 6 NC Nc Spac Tc Nc Spac Nn NC Nc Spac Tc Spac Fin
117105, 116syl 15 . . . . 5 Nn NC Nc Spac Tc Spac Fin
118117com23 72 . . . 4 Nn Nc Spac Tc NC Spac Fin
119118rexlimiv 2733 . . 3 Nn Nc Spac Tc NC Spac Fin
1203, 119sylbi 187 . 2 Spac Tc Fin NC Spac Fin
121120impcom 419 1 NC Spac Tc Fin Spac Fin
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wb 176   wa 358   wceq 1642   wcel 1710   wne 2517  wral 2615  wrex 2616  csn 3738  1cc1c 4135   Nn cnnc 4374  0cc0c 4375   cplc 4376   Fin cfin 4377  cfv 4782  (class class class)co 5526   NC cncs 6089   Nc cnc 6092   Tc ctc 6094  2cc2c 6095   ↑c cce 6097   Spac cspac 6274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-fix 5741  df-compose 5749  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-fullfun 5769  df-clos1 5874  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-map 6002  df-en 6030  df-ncs 6099  df-lec 6100  df-ltc 6101  df-nc 6102  df-tc 6104  df-2c 6105  df-ce 6107  df-tcfn 6108  df-spac 6275
This theorem is referenced by:  nchoicelem19  6308
  Copyright terms: Public domain W3C validator