Proof of Theorem axprimlem2
Step | Hyp | Ref
| Expression |
1 | | df-opk 4059 |
. . 3
⊢ ⟪B, C⟫ =
{{B}, {B, C}} |
2 | 1 | eqeq2i 2363 |
. 2
⊢ (a = ⟪B,
C⟫ ↔ a = {{B},
{B, C}}) |
3 | | dfcleq 2347 |
. . 3
⊢ (a = {{B},
{B, C}}
↔ ∀d(d ∈ a ↔
d ∈
{{B}, {B, C}})) |
4 | | vex 2863 |
. . . . . . 7
⊢ d ∈
V |
5 | 4 | elpr 3752 |
. . . . . 6
⊢ (d ∈ {{B}, {B, C}} ↔ (d =
{B} ∨
d = {B,
C})) |
6 | | axprimlem1 4089 |
. . . . . . 7
⊢ (d = {B} ↔
∀e(e ∈ d ↔
e = B)) |
7 | | dfcleq 2347 |
. . . . . . . 8
⊢ (d = {B, C} ↔ ∀f(f ∈ d ↔ f ∈ {B, C})) |
8 | | vex 2863 |
. . . . . . . . . . 11
⊢ f ∈
V |
9 | 8 | elpr 3752 |
. . . . . . . . . 10
⊢ (f ∈ {B, C} ↔
(f = B
∨ f =
C)) |
10 | 9 | bibi2i 304 |
. . . . . . . . 9
⊢ ((f ∈ d ↔ f ∈ {B, C}) ↔ (f
∈ d
↔ (f = B ∨ f = C))) |
11 | 10 | albii 1566 |
. . . . . . . 8
⊢ (∀f(f ∈ d ↔ f ∈ {B, C}) ↔ ∀f(f ∈ d ↔ (f =
B ∨
f = C))) |
12 | 7, 11 | bitri 240 |
. . . . . . 7
⊢ (d = {B, C} ↔ ∀f(f ∈ d ↔ (f =
B ∨
f = C))) |
13 | 6, 12 | orbi12i 507 |
. . . . . 6
⊢ ((d = {B} ∨ d = {B, C}) ↔
(∀e(e ∈ d ↔
e = B)
∨ ∀f(f ∈ d ↔ (f =
B ∨
f = C)))) |
14 | 5, 13 | bitri 240 |
. . . . 5
⊢ (d ∈ {{B}, {B, C}} ↔ (∀e(e ∈ d ↔ e =
B) ∨ ∀f(f ∈ d ↔ (f =
B ∨
f = C)))) |
15 | 14 | bibi2i 304 |
. . . 4
⊢ ((d ∈ a ↔ d ∈ {{B},
{B, C}}) ↔ (d
∈ a
↔ (∀e(e ∈ d ↔
e = B)
∨ ∀f(f ∈ d ↔ (f =
B ∨
f = C))))) |
16 | 15 | albii 1566 |
. . 3
⊢ (∀d(d ∈ a ↔ d ∈ {{B},
{B, C}}) ↔ ∀d(d ∈ a ↔ (∀e(e ∈ d ↔ e =
B) ∨ ∀f(f ∈ d ↔ (f =
B ∨
f = C))))) |
17 | 3, 16 | bitri 240 |
. 2
⊢ (a = {{B},
{B, C}}
↔ ∀d(d ∈ a ↔
(∀e(e ∈ d ↔
e = B)
∨ ∀f(f ∈ d ↔ (f =
B ∨
f = C))))) |
18 | 2, 17 | bitri 240 |
1
⊢ (a = ⟪B,
C⟫ ↔ ∀d(d ∈ a ↔ (∀e(e ∈ d ↔ e =
B) ∨ ∀f(f ∈ d ↔ (f =
B ∨
f = C))))) |