| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > elsuc | Unicode version | ||
| Description: Membership in a successor. Theorem X.1.16 of [Rosser] p. 279. (Contributed by SF, 16-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| elsuc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eladdc 4399 | 
. 2
 | |
| 2 | snex 4112 | 
. . . . . . 7
 | |
| 3 | ineq2 3452 | 
. . . . . . . . 9
 | |
| 4 | 3 | eqeq1d 2361 | 
. . . . . . . 8
 | 
| 5 | uneq2 3413 | 
. . . . . . . . 9
 | |
| 6 | 5 | eqeq2d 2364 | 
. . . . . . . 8
 | 
| 7 | 4, 6 | anbi12d 691 | 
. . . . . . 7
 | 
| 8 | 2, 7 | ceqsexv 2895 | 
. . . . . 6
 | 
| 9 | disjsn 3787 | 
. . . . . . . 8
 | |
| 10 | vex 2863 | 
. . . . . . . . 9
 | |
| 11 | 10 | elcompl 3226 | 
. . . . . . . 8
 | 
| 12 | 9, 11 | bitr4i 243 | 
. . . . . . 7
 | 
| 13 | 12 | anbi1i 676 | 
. . . . . 6
 | 
| 14 | 8, 13 | bitri 240 | 
. . . . 5
 | 
| 15 | 14 | exbii 1582 | 
. . . 4
 | 
| 16 | df-rex 2621 | 
. . . . 5
 | |
| 17 | el1c 4140 | 
. . . . . . . . 9
 | |
| 18 | 17 | anbi1i 676 | 
. . . . . . . 8
 | 
| 19 | 19.41v 1901 | 
. . . . . . . 8
 | |
| 20 | 18, 19 | bitr4i 243 | 
. . . . . . 7
 | 
| 21 | 20 | exbii 1582 | 
. . . . . 6
 | 
| 22 | excom 1741 | 
. . . . . 6
 | |
| 23 | 21, 22 | bitri 240 | 
. . . . 5
 | 
| 24 | 16, 23 | bitri 240 | 
. . . 4
 | 
| 25 | df-rex 2621 | 
. . . 4
 | |
| 26 | 15, 24, 25 | 3bitr4i 268 | 
. . 3
 | 
| 27 | 26 | rexbii 2640 | 
. 2
 | 
| 28 | 1, 27 | bitri 240 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-1c 4137 df-addc 4379 | 
| This theorem is referenced by: elsuci 4415 nnsucelr 4429 nndisjeq 4430 prepeano4 4452 ncfinraise 4482 ncfinlower 4484 tfinsuc 4499 oddfinex 4505 nnadjoin 4521 nnpweq 4524 sfindbl 4531 tfinnn 4535 peano4nc 6151 el2c 6192 nmembers1lem3 6271 | 
| Copyright terms: Public domain | W3C validator |