New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elsuc | Unicode version |
Description: Membership in a successor. Theorem X.1.16 of [Rosser] p. 279. (Contributed by SF, 16-Jan-2015.) |
Ref | Expression |
---|---|
elsuc | 1c ∼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eladdc 4399 | . 2 1c 1c | |
2 | snex 4112 | . . . . . . 7 | |
3 | ineq2 3452 | . . . . . . . . 9 | |
4 | 3 | eqeq1d 2361 | . . . . . . . 8 |
5 | uneq2 3413 | . . . . . . . . 9 | |
6 | 5 | eqeq2d 2364 | . . . . . . . 8 |
7 | 4, 6 | anbi12d 691 | . . . . . . 7 |
8 | 2, 7 | ceqsexv 2895 | . . . . . 6 |
9 | disjsn 3787 | . . . . . . . 8 | |
10 | vex 2863 | . . . . . . . . 9 | |
11 | 10 | elcompl 3226 | . . . . . . . 8 ∼ |
12 | 9, 11 | bitr4i 243 | . . . . . . 7 ∼ |
13 | 12 | anbi1i 676 | . . . . . 6 ∼ |
14 | 8, 13 | bitri 240 | . . . . 5 ∼ |
15 | 14 | exbii 1582 | . . . 4 ∼ |
16 | df-rex 2621 | . . . . 5 1c 1c | |
17 | el1c 4140 | . . . . . . . . 9 1c | |
18 | 17 | anbi1i 676 | . . . . . . . 8 1c |
19 | 19.41v 1901 | . . . . . . . 8 | |
20 | 18, 19 | bitr4i 243 | . . . . . . 7 1c |
21 | 20 | exbii 1582 | . . . . . 6 1c |
22 | excom 1741 | . . . . . 6 | |
23 | 21, 22 | bitri 240 | . . . . 5 1c |
24 | 16, 23 | bitri 240 | . . . 4 1c |
25 | df-rex 2621 | . . . 4 ∼ ∼ | |
26 | 15, 24, 25 | 3bitr4i 268 | . . 3 1c ∼ |
27 | 26 | rexbii 2640 | . 2 1c ∼ |
28 | 1, 27 | bitri 240 | 1 1c ∼ |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wb 176 wa 358 wex 1541 wceq 1642 wcel 1710 wrex 2616 ∼ ccompl 3206 cun 3208 cin 3209 c0 3551 csn 3738 1cc1c 4135 cplc 4376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-1c 4137 df-addc 4379 |
This theorem is referenced by: elsuci 4415 nnsucelr 4429 nndisjeq 4430 prepeano4 4452 ncfinraise 4482 ncfinlower 4484 tfinsuc 4499 oddfinex 4505 nnadjoin 4521 nnpweq 4524 sfindbl 4531 tfinnn 4535 peano4nc 6151 el2c 6192 nmembers1lem3 6271 |
Copyright terms: Public domain | W3C validator |