NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  el2c GIF version

Theorem el2c 6192
Description: Membership in cardinal two. (Contributed by SF, 3-Mar-2015.)
Assertion
Ref Expression
el2c (A 2cxy(xy A = {x, y}))
Distinct variable group:   x,A,y

Proof of Theorem el2c
Dummy variable t is distinct from all other variables.
StepHypRef Expression
1 elsuc 4414 . . 3 (A (1c +c 1c) ↔ t 1c y tA = (t ∪ {y}))
2 df-rex 2621 . . 3 (t 1c y tA = (t ∪ {y}) ↔ t(t 1c y tA = (t ∪ {y})))
3 el1c 4140 . . . . . . 7 (t 1cx t = {x})
43anbi1i 676 . . . . . 6 ((t 1c y tA = (t ∪ {y})) ↔ (x t = {x} y tA = (t ∪ {y})))
5 19.41v 1901 . . . . . 6 (x(t = {x} y tA = (t ∪ {y})) ↔ (x t = {x} y tA = (t ∪ {y})))
64, 5bitr4i 243 . . . . 5 ((t 1c y tA = (t ∪ {y})) ↔ x(t = {x} y tA = (t ∪ {y})))
76exbii 1582 . . . 4 (t(t 1c y tA = (t ∪ {y})) ↔ tx(t = {x} y tA = (t ∪ {y})))
8 excom 1741 . . . 4 (tx(t = {x} y tA = (t ∪ {y})) ↔ xt(t = {x} y tA = (t ∪ {y})))
97, 8bitri 240 . . 3 (t(t 1c y tA = (t ∪ {y})) ↔ xt(t = {x} y tA = (t ∪ {y})))
101, 2, 93bitri 262 . 2 (A (1c +c 1c) ↔ xt(t = {x} y tA = (t ∪ {y})))
11 1p1e2c 6156 . . 3 (1c +c 1c) = 2c
1211eleq2i 2417 . 2 (A (1c +c 1c) ↔ A 2c)
13 snex 4112 . . . . 5 {x} V
14 compleq 3244 . . . . . 6 (t = {x} → ∼ t = ∼ {x})
15 uneq1 3412 . . . . . . . 8 (t = {x} → (t ∪ {y}) = ({x} ∪ {y}))
16 df-pr 3743 . . . . . . . 8 {x, y} = ({x} ∪ {y})
1715, 16syl6eqr 2403 . . . . . . 7 (t = {x} → (t ∪ {y}) = {x, y})
1817eqeq2d 2364 . . . . . 6 (t = {x} → (A = (t ∪ {y}) ↔ A = {x, y}))
1914, 18rexeqbidv 2821 . . . . 5 (t = {x} → (y tA = (t ∪ {y}) ↔ y ∼ {x}A = {x, y}))
2013, 19ceqsexv 2895 . . . 4 (t(t = {x} y tA = (t ∪ {y})) ↔ y ∼ {x}A = {x, y})
21 df-rex 2621 . . . 4 (y ∼ {x}A = {x, y} ↔ y(y ∼ {x} A = {x, y}))
22 elsn 3749 . . . . . . . . 9 (y {x} ↔ y = x)
23 equcom 1680 . . . . . . . . 9 (y = xx = y)
2422, 23bitri 240 . . . . . . . 8 (y {x} ↔ x = y)
2524notbii 287 . . . . . . 7 y {x} ↔ ¬ x = y)
26 vex 2863 . . . . . . . 8 y V
2726elcompl 3226 . . . . . . 7 (y ∼ {x} ↔ ¬ y {x})
28 df-ne 2519 . . . . . . 7 (xy ↔ ¬ x = y)
2925, 27, 283bitr4i 268 . . . . . 6 (y ∼ {x} ↔ xy)
3029anbi1i 676 . . . . 5 ((y ∼ {x} A = {x, y}) ↔ (xy A = {x, y}))
3130exbii 1582 . . . 4 (y(y ∼ {x} A = {x, y}) ↔ y(xy A = {x, y}))
3220, 21, 313bitri 262 . . 3 (t(t = {x} y tA = (t ∪ {y})) ↔ y(xy A = {x, y}))
3332exbii 1582 . 2 (xt(t = {x} y tA = (t ∪ {y})) ↔ xy(xy A = {x, y}))
3410, 12, 333bitr3i 266 1 (A 2cxy(xy A = {x, y}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  wne 2517  wrex 2616  ccompl 3206  cun 3208  {csn 3738  {cpr 3739  1cc1c 4135   +c cplc 4376  2cc2c 6095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-en 6030  df-ncs 6099  df-nc 6102  df-2c 6105
This theorem is referenced by:  ce2  6193
  Copyright terms: Public domain W3C validator