| Step | Hyp | Ref
 | Expression | 
| 1 |   | elsuc 4414 | 
. . 3
⊢ (A ∈
(1c +c 1c) ↔ ∃t ∈ 1c ∃y ∈ ∼ tA = (t ∪ {y})) | 
| 2 |   | df-rex 2621 | 
. . 3
⊢ (∃t ∈ 1c ∃y ∈ ∼ tA = (t ∪ {y})
↔ ∃t(t ∈ 1c ∧ ∃y ∈ ∼ tA = (t ∪ {y}))) | 
| 3 |   | el1c 4140 | 
. . . . . . 7
⊢ (t ∈
1c ↔ ∃x t = {x}) | 
| 4 | 3 | anbi1i 676 | 
. . . . . 6
⊢ ((t ∈
1c ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ (∃x t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))) | 
| 5 |   | 19.41v 1901 | 
. . . . . 6
⊢ (∃x(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ (∃x t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))) | 
| 6 | 4, 5 | bitr4i 243 | 
. . . . 5
⊢ ((t ∈
1c ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ ∃x(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))) | 
| 7 | 6 | exbii 1582 | 
. . . 4
⊢ (∃t(t ∈
1c ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ ∃t∃x(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))) | 
| 8 |   | excom 1741 | 
. . . 4
⊢ (∃t∃x(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ ∃x∃t(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))) | 
| 9 | 7, 8 | bitri 240 | 
. . 3
⊢ (∃t(t ∈
1c ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ ∃x∃t(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))) | 
| 10 | 1, 2, 9 | 3bitri 262 | 
. 2
⊢ (A ∈
(1c +c 1c) ↔ ∃x∃t(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))) | 
| 11 |   | 1p1e2c 6156 | 
. . 3
⊢
(1c +c 1c) =
2c | 
| 12 | 11 | eleq2i 2417 | 
. 2
⊢ (A ∈
(1c +c 1c) ↔
A ∈
2c) | 
| 13 |   | snex 4112 | 
. . . . 5
⊢ {x} ∈
V | 
| 14 |   | compleq 3244 | 
. . . . . 6
⊢ (t = {x} →
∼ t = ∼ {x}) | 
| 15 |   | uneq1 3412 | 
. . . . . . . 8
⊢ (t = {x} →
(t ∪ {y}) = ({x} ∪
{y})) | 
| 16 |   | df-pr 3743 | 
. . . . . . . 8
⊢ {x, y} =
({x} ∪ {y}) | 
| 17 | 15, 16 | syl6eqr 2403 | 
. . . . . . 7
⊢ (t = {x} →
(t ∪ {y}) = {x,
y}) | 
| 18 | 17 | eqeq2d 2364 | 
. . . . . 6
⊢ (t = {x} →
(A = (t
∪ {y}) ↔ A = {x, y})) | 
| 19 | 14, 18 | rexeqbidv 2821 | 
. . . . 5
⊢ (t = {x} →
(∃y
∈ ∼ tA = (t ∪ {y})
↔ ∃y ∈ ∼
{x}A =
{x, y})) | 
| 20 | 13, 19 | ceqsexv 2895 | 
. . . 4
⊢ (∃t(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ ∃y ∈ ∼
{x}A =
{x, y}) | 
| 21 |   | df-rex 2621 | 
. . . 4
⊢ (∃y ∈ ∼ {x}A = {x, y} ↔
∃y(y ∈ ∼ {x}
∧ A =
{x, y})) | 
| 22 |   | elsn 3749 | 
. . . . . . . . 9
⊢ (y ∈ {x} ↔ y =
x) | 
| 23 |   | equcom 1680 | 
. . . . . . . . 9
⊢ (y = x ↔
x = y) | 
| 24 | 22, 23 | bitri 240 | 
. . . . . . . 8
⊢ (y ∈ {x} ↔ x =
y) | 
| 25 | 24 | notbii 287 | 
. . . . . . 7
⊢ (¬ y ∈ {x} ↔ ¬ x = y) | 
| 26 |   | vex 2863 | 
. . . . . . . 8
⊢ y ∈
V | 
| 27 | 26 | elcompl 3226 | 
. . . . . . 7
⊢ (y ∈ ∼
{x} ↔ ¬ y ∈ {x}) | 
| 28 |   | df-ne 2519 | 
. . . . . . 7
⊢ (x ≠ y ↔
¬ x = y) | 
| 29 | 25, 27, 28 | 3bitr4i 268 | 
. . . . . 6
⊢ (y ∈ ∼
{x} ↔ x ≠ y) | 
| 30 | 29 | anbi1i 676 | 
. . . . 5
⊢ ((y ∈ ∼
{x} ∧
A = {x,
y}) ↔ (x ≠ y ∧ A = {x, y})) | 
| 31 | 30 | exbii 1582 | 
. . . 4
⊢ (∃y(y ∈ ∼
{x} ∧
A = {x,
y}) ↔ ∃y(x ≠ y ∧ A = {x, y})) | 
| 32 | 20, 21, 31 | 3bitri 262 | 
. . 3
⊢ (∃t(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ ∃y(x ≠
y ∧
A = {x,
y})) | 
| 33 | 32 | exbii 1582 | 
. 2
⊢ (∃x∃t(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ ∃x∃y(x ≠
y ∧
A = {x,
y})) | 
| 34 | 10, 12, 33 | 3bitr3i 266 | 
1
⊢ (A ∈
2c ↔ ∃x∃y(x ≠
y ∧
A = {x,
y})) |