Step | Hyp | Ref
| Expression |
1 | | elsuc 4414 |
. . 3
⊢ (A ∈
(1c +c 1c) ↔ ∃t ∈ 1c ∃y ∈ ∼ tA = (t ∪ {y})) |
2 | | df-rex 2621 |
. . 3
⊢ (∃t ∈ 1c ∃y ∈ ∼ tA = (t ∪ {y})
↔ ∃t(t ∈ 1c ∧ ∃y ∈ ∼ tA = (t ∪ {y}))) |
3 | | el1c 4140 |
. . . . . . 7
⊢ (t ∈
1c ↔ ∃x t = {x}) |
4 | 3 | anbi1i 676 |
. . . . . 6
⊢ ((t ∈
1c ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ (∃x t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))) |
5 | | 19.41v 1901 |
. . . . . 6
⊢ (∃x(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ (∃x t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))) |
6 | 4, 5 | bitr4i 243 |
. . . . 5
⊢ ((t ∈
1c ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ ∃x(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))) |
7 | 6 | exbii 1582 |
. . . 4
⊢ (∃t(t ∈
1c ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ ∃t∃x(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))) |
8 | | excom 1741 |
. . . 4
⊢ (∃t∃x(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ ∃x∃t(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))) |
9 | 7, 8 | bitri 240 |
. . 3
⊢ (∃t(t ∈
1c ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ ∃x∃t(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))) |
10 | 1, 2, 9 | 3bitri 262 |
. 2
⊢ (A ∈
(1c +c 1c) ↔ ∃x∃t(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))) |
11 | | 1p1e2c 6156 |
. . 3
⊢
(1c +c 1c) =
2c |
12 | 11 | eleq2i 2417 |
. 2
⊢ (A ∈
(1c +c 1c) ↔
A ∈
2c) |
13 | | snex 4112 |
. . . . 5
⊢ {x} ∈
V |
14 | | compleq 3244 |
. . . . . 6
⊢ (t = {x} →
∼ t = ∼ {x}) |
15 | | uneq1 3412 |
. . . . . . . 8
⊢ (t = {x} →
(t ∪ {y}) = ({x} ∪
{y})) |
16 | | df-pr 3743 |
. . . . . . . 8
⊢ {x, y} =
({x} ∪ {y}) |
17 | 15, 16 | syl6eqr 2403 |
. . . . . . 7
⊢ (t = {x} →
(t ∪ {y}) = {x,
y}) |
18 | 17 | eqeq2d 2364 |
. . . . . 6
⊢ (t = {x} →
(A = (t
∪ {y}) ↔ A = {x, y})) |
19 | 14, 18 | rexeqbidv 2821 |
. . . . 5
⊢ (t = {x} →
(∃y
∈ ∼ tA = (t ∪ {y})
↔ ∃y ∈ ∼
{x}A =
{x, y})) |
20 | 13, 19 | ceqsexv 2895 |
. . . 4
⊢ (∃t(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ ∃y ∈ ∼
{x}A =
{x, y}) |
21 | | df-rex 2621 |
. . . 4
⊢ (∃y ∈ ∼ {x}A = {x, y} ↔
∃y(y ∈ ∼ {x}
∧ A =
{x, y})) |
22 | | elsn 3749 |
. . . . . . . . 9
⊢ (y ∈ {x} ↔ y =
x) |
23 | | equcom 1680 |
. . . . . . . . 9
⊢ (y = x ↔
x = y) |
24 | 22, 23 | bitri 240 |
. . . . . . . 8
⊢ (y ∈ {x} ↔ x =
y) |
25 | 24 | notbii 287 |
. . . . . . 7
⊢ (¬ y ∈ {x} ↔ ¬ x = y) |
26 | | vex 2863 |
. . . . . . . 8
⊢ y ∈
V |
27 | 26 | elcompl 3226 |
. . . . . . 7
⊢ (y ∈ ∼
{x} ↔ ¬ y ∈ {x}) |
28 | | df-ne 2519 |
. . . . . . 7
⊢ (x ≠ y ↔
¬ x = y) |
29 | 25, 27, 28 | 3bitr4i 268 |
. . . . . 6
⊢ (y ∈ ∼
{x} ↔ x ≠ y) |
30 | 29 | anbi1i 676 |
. . . . 5
⊢ ((y ∈ ∼
{x} ∧
A = {x,
y}) ↔ (x ≠ y ∧ A = {x, y})) |
31 | 30 | exbii 1582 |
. . . 4
⊢ (∃y(y ∈ ∼
{x} ∧
A = {x,
y}) ↔ ∃y(x ≠ y ∧ A = {x, y})) |
32 | 20, 21, 31 | 3bitri 262 |
. . 3
⊢ (∃t(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ ∃y(x ≠
y ∧
A = {x,
y})) |
33 | 32 | exbii 1582 |
. 2
⊢ (∃x∃t(t = {x} ∧ ∃y ∈ ∼ tA = (t ∪ {y}))
↔ ∃x∃y(x ≠
y ∧
A = {x,
y})) |
34 | 10, 12, 33 | 3bitr3i 266 |
1
⊢ (A ∈
2c ↔ ∃x∃y(x ≠
y ∧
A = {x,
y})) |