![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > fveq2 | Unicode version |
Description: Equality theorem for function value. (Contributed by set.mm contributors, 29-Dec-1996.) |
Ref | Expression |
---|---|
fveq2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4642 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | iotabidv 4360 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df-fv 4795 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | df-fv 4795 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | 3eqtr4g 2410 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-addc 4378 df-nnc 4379 df-phi 4565 df-op 4566 df-br 4640 df-fv 4795 |
This theorem is referenced by: fveq2i 5331 fveq2d 5332 fvif 5340 dffn5 5363 eqfnfv2f 5396 fnasrn 5417 foco2 5426 ffnfvf 5428 fnressn 5438 fressnfv 5439 fvi 5442 fconstfv 5456 funiunfv 5467 funiunfvf 5468 dff13f 5472 f1fveq 5473 f1elima 5474 f1ocnvfv 5478 f1ocnvfvb 5479 isorel 5489 isocnv 5491 isotr 5495 f1oiso2 5500 1st2nd2 5516 op1std 5522 op2ndd 5523 ffnov 5587 eqfnov 5589 fnov 5591 fnrnov 5605 foov 5606 funimassov 5609 ovelimab 5610 fvmptss 5705 fvmptf 5722 pw1fnf1o 5855 fvfullfun 5864 fce 6188 nchoicelem9 6297 nchoicelem12 6300 nchoicelem17 6305 nchoicelem19 6307 |
Copyright terms: Public domain | W3C validator |