New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > lecadd2 | Unicode version |
Description: Cardinal addition preserves cardinal less than. Biconditional form of corollary 4 of theorem XI.3.2 of [Rosser] p. 391. (Contributed by Scott Fenton, 2-Aug-2019.) |
Ref | Expression |
---|---|
lecadd2 | Nn NC NC c c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnc 6147 | . . . . . 6 Nn NC | |
2 | ncaddccl 6145 | . . . . . 6 NC NC NC | |
3 | 1, 2 | sylan 457 | . . . . 5 Nn NC NC |
4 | 3 | 3adant3 975 | . . . 4 Nn NC NC NC |
5 | ncaddccl 6145 | . . . . . 6 NC NC NC | |
6 | 1, 5 | sylan 457 | . . . . 5 Nn NC NC |
7 | 6 | 3adant2 974 | . . . 4 Nn NC NC NC |
8 | dflec2 6211 | . . . 4 NC NC c NC | |
9 | 4, 7, 8 | syl2anc 642 | . . 3 Nn NC NC c NC |
10 | addcass 4416 | . . . . . 6 | |
11 | 10 | eqeq2i 2363 | . . . . 5 |
12 | simpl1 958 | . . . . . . 7 Nn NC NC NC Nn | |
13 | simpl3 960 | . . . . . . 7 Nn NC NC NC NC | |
14 | ncaddccl 6145 | . . . . . . . 8 NC NC NC | |
15 | 14 | 3ad2antl2 1118 | . . . . . . 7 Nn NC NC NC NC |
16 | addccan2nc 6266 | . . . . . . 7 Nn NC NC | |
17 | 12, 13, 15, 16 | syl3anc 1182 | . . . . . 6 Nn NC NC NC |
18 | addlecncs 6210 | . . . . . . . 8 NC NC c | |
19 | 18 | 3ad2antl2 1118 | . . . . . . 7 Nn NC NC NC c |
20 | breq2 4644 | . . . . . . 7 c c | |
21 | 19, 20 | syl5ibrcom 213 | . . . . . 6 Nn NC NC NC c |
22 | 17, 21 | sylbid 206 | . . . . 5 Nn NC NC NC c |
23 | 11, 22 | syl5bi 208 | . . . 4 Nn NC NC NC c |
24 | 23 | rexlimdva 2739 | . . 3 Nn NC NC NC c |
25 | 9, 24 | sylbid 206 | . 2 Nn NC NC c c |
26 | leaddc2 6216 | . . . 4 NC NC NC c c | |
27 | 26 | ex 423 | . . 3 NC NC NC c c |
28 | 1, 27 | syl3an1 1215 | . 2 Nn NC NC c c |
29 | 25, 28 | impbid 183 | 1 Nn NC NC c c |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 w3a 934 wceq 1642 wcel 1710 wrex 2616 Nn cnnc 4374 cplc 4376 class class class wbr 4640 NC cncs 6089 c clec 6090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-fix 5741 df-cup 5743 df-disj 5745 df-addcfn 5747 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-lec 6100 df-nc 6102 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |