Theorem List for New Foundations Explorer - 1101-1200   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | simp233 1101 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | simp311 1102 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                        
                | 
|   | 
| Theorem | simp312 1103 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                        
                | 
|   | 
| Theorem | simp313 1104 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                        
                | 
|   | 
| Theorem | simp321 1105 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | simp322 1106 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | simp323 1107 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | simp331 1108 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | simp332 1109 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | simp333 1110 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | 3adantl1 1111 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       24-Feb-2005.)
 | 
           
                                           | 
|   | 
| Theorem | 3adantl2 1112 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       24-Feb-2005.)
 | 
           
                                           | 
|   | 
| Theorem | 3adantl3 1113 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       24-Feb-2005.)
 | 
           
                                           | 
|   | 
| Theorem | 3adantr1 1114 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       27-Apr-2005.)
 | 
                                                
      | 
|   | 
| Theorem | 3adantr2 1115 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       27-Apr-2005.)
 | 
                                                
      | 
|   | 
| Theorem | 3adantr3 1116 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       27-Apr-2005.)
 | 
                                                
      | 
|   | 
| Theorem | 3ad2antl1 1117 | 
Deduction adding conjuncts to antecedent.  (Contributed by NM,
       4-Aug-2007.)
 | 
                                                | 
|   | 
| Theorem | 3ad2antl2 1118 | 
Deduction adding conjuncts to antecedent.  (Contributed by NM,
       4-Aug-2007.)
 | 
                                                | 
|   | 
| Theorem | 3ad2antl3 1119 | 
Deduction adding conjuncts to antecedent.  (Contributed by NM,
       4-Aug-2007.)
 | 
                                                | 
|   | 
| Theorem | 3ad2antr1 1120 | 
Deduction adding conjuncts to antecedent.  (Contributed by NM,
       25-Dec-2007.)
 | 
                                          
      | 
|   | 
| Theorem | 3ad2antr2 1121 | 
Deduction adding conjuncts to antecedent.  (Contributed by NM,
       27-Dec-2007.)
 | 
                                          
      | 
|   | 
| Theorem | 3ad2antr3 1122 | 
Deduction adding conjuncts to antecedent.  (Contributed by NM,
       30-Dec-2007.)
 | 
                                          
      | 
|   | 
| Theorem | 3anibar 1123 | 
Remove a hypothesis from the second member of a biimplication.
       (Contributed by FL, 22-Jul-2008.)
 | 
              
                                      
            | 
|   | 
| Theorem | 3mix1 1124 | 
Introduction in triple disjunction.  (Contributed by NM, 4-Apr-1995.)
 | 
                    | 
|   | 
| Theorem | 3mix2 1125 | 
Introduction in triple disjunction.  (Contributed by NM, 4-Apr-1995.)
 | 
             
       | 
|   | 
| Theorem | 3mix3 1126 | 
Introduction in triple disjunction.  (Contributed by NM, 4-Apr-1995.)
 | 
                    | 
|   | 
| Theorem | 3mix1i 1127 | 
Introduction in triple disjunction.  (Contributed by Mario Carneiro,
       6-Oct-2014.)
 | 
                        | 
|   | 
| Theorem | 3mix2i 1128 | 
Introduction in triple disjunction.  (Contributed by Mario Carneiro,
       6-Oct-2014.)
 | 
                        | 
|   | 
| Theorem | 3mix3i 1129 | 
Introduction in triple disjunction.  (Contributed by Mario Carneiro,
       6-Oct-2014.)
 | 
                        | 
|   | 
| Theorem | 3pm3.2i 1130 | 
Infer conjunction of premises.  (Contributed by NM, 10-Feb-1995.)
 | 
                                            | 
|   | 
| Theorem | pm3.2an3 1131 | 
pm3.2 434 for a triple conjunction.  (Contributed by
Alan Sare,
     24-Oct-2011.)
 | 
                                | 
|   | 
| Theorem | 3jca 1132 | 
Join consequents with conjunction.  (Contributed by NM, 9-Apr-1994.)
 | 
                                                                    | 
|   | 
| Theorem | 3jcad 1133 | 
Deduction conjoining the consequents of three implications.
       (Contributed by NM, 25-Sep-2005.)
 | 
                                                                                            | 
|   | 
| Theorem | mpbir3an 1134 | 
Detach a conjunction of truths in a biconditional.  (Contributed by NM,
       16-Sep-2011.)
 | 
                                                            | 
|   | 
| Theorem | mpbir3and 1135 | 
Detach a conjunction of truths in a biconditional.  (Contributed by
       Mario Carneiro, 11-May-2014.)  (Revised by Mario Carneiro,
       9-Jan-2015.)
 | 
                                                                                          | 
|   | 
| Theorem | syl3anbrc 1136 | 
Syllogism inference.  (Contributed by Mario Carneiro, 11-May-2014.)
 | 
                                                                                    | 
|   | 
| Theorem | 3anim123i 1137 | 
Join antecedents and consequents with conjunction.  (Contributed by NM,
       8-Apr-1994.)
 | 
                                                              
                | 
|   | 
| Theorem | 3anim1i 1138 | 
Add two conjuncts to antecedent and consequent.  (Contributed by Jeff
       Hankins, 16-Aug-2009.)
 | 
                              
                | 
|   | 
| Theorem | 3anim3i 1139 | 
Add two conjuncts to antecedent and consequent.  (Contributed by Jeff
       Hankins, 19-Aug-2009.)
 | 
                                              | 
|   | 
| Theorem | 3anbi123i 1140 | 
Join 3 biconditionals with conjunction.  (Contributed by NM,
       21-Apr-1994.)
 | 
                                                                              | 
|   | 
| Theorem | 3orbi123i 1141 | 
Join 3 biconditionals with disjunction.  (Contributed by NM,
       17-May-1994.)
 | 
                                                                              | 
|   | 
| Theorem | 3anbi1i 1142 | 
Inference adding two conjuncts to each side of a biconditional.
       (Contributed by NM, 8-Sep-2006.)
 | 
                                              | 
|   | 
| Theorem | 3anbi2i 1143 | 
Inference adding two conjuncts to each side of a biconditional.
       (Contributed by NM, 8-Sep-2006.)
 | 
                                              | 
|   | 
| Theorem | 3anbi3i 1144 | 
Inference adding two conjuncts to each side of a biconditional.
       (Contributed by NM, 8-Sep-2006.)
 | 
                                              | 
|   | 
| Theorem | 3imp 1145 | 
Importation inference.  (Contributed by NM, 8-Apr-1994.)
 | 
                                          
      | 
|   | 
| Theorem | 3impa 1146 | 
Importation from double to triple conjunction.  (Contributed by NM,
       20-Aug-1995.)
 | 
           
                               
      | 
|   | 
| Theorem | 3impb 1147 | 
Importation from double to triple conjunction.  (Contributed by NM,
       20-Aug-1995.)
 | 
                                          
      | 
|   | 
| Theorem | 3impia 1148 | 
Importation to triple conjunction.  (Contributed by NM, 13-Jun-2006.)
 | 
                                          
      | 
|   | 
| Theorem | 3impib 1149 | 
Importation to triple conjunction.  (Contributed by NM, 13-Jun-2006.)
 | 
                                          
      | 
|   | 
| Theorem | 3exp 1150 | 
Exportation inference.  (Contributed by NM, 30-May-1994.)
 | 
              
                                  | 
|   | 
| Theorem | 3expa 1151 | 
Exportation from triple to double conjunction.  (Contributed by NM,
       20-Aug-1995.)
 | 
              
                                  | 
|   | 
| Theorem | 3expb 1152 | 
Exportation from triple to double conjunction.  (Contributed by NM,
       20-Aug-1995.)
 | 
              
                                  | 
|   | 
| Theorem | 3expia 1153 | 
Exportation from triple conjunction.  (Contributed by NM,
       19-May-2007.)
 | 
              
                                  | 
|   | 
| Theorem | 3expib 1154 | 
Exportation from triple conjunction.  (Contributed by NM,
       19-May-2007.)
 | 
              
                                  | 
|   | 
| Theorem | 3com12 1155 | 
Commutation in antecedent.  Swap 1st and 3rd.  (Contributed by NM,
       28-Jan-1996.)  (Proof shortened by Andrew Salmon, 13-May-2011.)
 | 
              
                                | 
|   | 
| Theorem | 3com13 1156 | 
Commutation in antecedent.  Swap 1st and 3rd.  (Contributed by NM,
       28-Jan-1996.)
 | 
              
                                | 
|   | 
| Theorem | 3com23 1157 | 
Commutation in antecedent.  Swap 2nd and 3rd.  (Contributed by NM,
       28-Jan-1996.)
 | 
              
                                | 
|   | 
| Theorem | 3coml 1158 | 
Commutation in antecedent.  Rotate left.  (Contributed by NM,
       28-Jan-1996.)
 | 
              
                                | 
|   | 
| Theorem | 3comr 1159 | 
Commutation in antecedent.  Rotate right.  (Contributed by NM,
       28-Jan-1996.)
 | 
              
                                | 
|   | 
| Theorem | 3adant3r1 1160 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       16-Feb-2008.)
 | 
              
                                      | 
|   | 
| Theorem | 3adant3r2 1161 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       17-Feb-2008.)
 | 
              
                                      | 
|   | 
| Theorem | 3adant3r3 1162 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       18-Feb-2008.)
 | 
              
                                      | 
|   | 
| Theorem | 3an1rs 1163 | 
Swap conjuncts.  (Contributed by NM, 16-Dec-2007.)
 | 
                                               
           | 
|   | 
| Theorem | 3imp1 1164 | 
Importation to left triple conjunction.  (Contributed by NM,
       24-Feb-2005.)
 | 
                                                            | 
|   | 
| Theorem | 3impd 1165 | 
Importation deduction for triple conjunction.  (Contributed by NM,
       26-Oct-2006.)
 | 
                                                            | 
|   | 
| Theorem | 3imp2 1166 | 
Importation to right triple conjunction.  (Contributed by NM,
       26-Oct-2006.)
 | 
                                                      
      | 
|   | 
| Theorem | 3exp1 1167 | 
Exportation from left triple conjunction.  (Contributed by NM,
       24-Feb-2005.)
 | 
                                                            | 
|   | 
| Theorem | 3expd 1168 | 
Exportation deduction for triple conjunction.  (Contributed by NM,
       26-Oct-2006.)
 | 
                                                            | 
|   | 
| Theorem | 3exp2 1169 | 
Exportation from right triple conjunction.  (Contributed by NM,
       26-Oct-2006.)
 | 
                    
                                        | 
|   | 
| Theorem | exp5o 1170 | 
A triple exportation inference.  (Contributed by Jeff Hankins,
       8-Jul-2009.)
 | 
              
                                                          | 
|   | 
| Theorem | exp516 1171 | 
A triple exportation inference.  (Contributed by Jeff Hankins,
       8-Jul-2009.)
 | 
                                                                        | 
|   | 
| Theorem | exp520 1172 | 
A triple exportation inference.  (Contributed by Jeff Hankins,
       8-Jul-2009.)
 | 
                                                                        | 
|   | 
| Theorem | 3anassrs 1173 | 
Associative law for conjunction applied to antecedent (eliminates
       syllogism).  (Contributed by Mario Carneiro, 4-Jan-2017.)
 | 
                    
                                        | 
|   | 
| Theorem | 3adant1l 1174 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       8-Jan-2006.)
 | 
              
                                      | 
|   | 
| Theorem | 3adant1r 1175 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       8-Jan-2006.)
 | 
              
                                      | 
|   | 
| Theorem | 3adant2l 1176 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       8-Jan-2006.)
 | 
              
                           
           | 
|   | 
| Theorem | 3adant2r 1177 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       8-Jan-2006.)
 | 
              
                           
           | 
|   | 
| Theorem | 3adant3l 1178 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       8-Jan-2006.)
 | 
              
                                      | 
|   | 
| Theorem | 3adant3r 1179 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       8-Jan-2006.)
 | 
              
                                      | 
|   | 
| Theorem | syl12anc 1180 | 
Syllogism combined with contraction.  (Contributed by Jeff Hankins,
         1-Aug-2009.)
 | 
                                                                                      | 
|   | 
| Theorem | syl21anc 1181 | 
Syllogism combined with contraction.  (Contributed by Jeff Hankins,
         1-Aug-2009.)
 | 
                                                           
                           | 
|   | 
| Theorem | syl3anc 1182 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                                    | 
|   | 
| Theorem | syl22anc 1183 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                           
                                 | 
|   | 
| Theorem | syl13anc 1184 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                                                          | 
|   | 
| Theorem | syl31anc 1185 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                                                          | 
|   | 
| Theorem | syl112anc 1186 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                                    
                      | 
|   | 
| Theorem | syl121anc 1187 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                                                          | 
|   | 
| Theorem | syl211anc 1188 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                           
                               | 
|   | 
| Theorem | syl23anc 1189 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                                           
                                     | 
|   | 
| Theorem | syl32anc 1190 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                                                                                | 
|   | 
| Theorem | syl122anc 1191 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                                                          
                      | 
|   | 
| Theorem | syl212anc 1192 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                                           
                                     | 
|   | 
| Theorem | syl221anc 1193 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                                           
          
                           | 
|   | 
| Theorem | syl113anc 1194 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                                                                              | 
|   | 
| Theorem | syl131anc 1195 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                                                                              | 
|   | 
| Theorem | syl311anc 1196 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                                                                              | 
|   | 
| Theorem | syl33anc 1197 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                                                                                                    | 
|   | 
| Theorem | syl222anc 1198 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                                                           
          
                                 | 
|   | 
| Theorem | syl123anc 1199 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Mar-2012.)
 | 
                                                                                                                                                    | 
|   | 
| Theorem | syl132anc 1200 | 
Syllogism combined with contraction.  (Contributed by NM,
         11-Jul-2012.)
 | 
                                                                                                                                                    |