| Step | Hyp | Ref
 | Expression | 
| 1 |   | elncs 6120 | 
. . . . 5
⊢ (A ∈ NC ↔ ∃x A = Nc x) | 
| 2 |   | elncs 6120 | 
. . . . 5
⊢ (B ∈ NC ↔ ∃y B = Nc y) | 
| 3 | 1, 2 | anbi12i 678 | 
. . . 4
⊢ ((A ∈ NC ∧ B ∈ NC ) ↔ (∃x A = Nc x ∧ ∃y B = Nc y)) | 
| 4 |   | eeanv 1913 | 
. . . 4
⊢ (∃x∃y(A = Nc x ∧ B = Nc y) ↔ (∃x A = Nc x ∧ ∃y B = Nc y)) | 
| 5 | 3, 4 | bitr4i 243 | 
. . 3
⊢ ((A ∈ NC ∧ B ∈ NC ) ↔ ∃x∃y(A = Nc x ∧ B = Nc y)) | 
| 6 |   | vex 2863 | 
. . . . . . . 8
⊢ x ∈
V | 
| 7 |   | vex 2863 | 
. . . . . . . 8
⊢ y ∈
V | 
| 8 | 6, 7 | mucnc 6132 | 
. . . . . . 7
⊢ ( Nc x
·c Nc y) = Nc (x × y) | 
| 9 |   | df0c2 6138 | 
. . . . . . 7
⊢
0c = Nc ∅ | 
| 10 | 8, 9 | eqeq12i 2366 | 
. . . . . 6
⊢ (( Nc x
·c Nc y) = 0c ↔ Nc (x ×
y) = Nc ∅) | 
| 11 | 6, 7 | xpex 5116 | 
. . . . . . . . 9
⊢ (x × y)
∈ V | 
| 12 | 11 | eqnc 6128 | 
. . . . . . . 8
⊢ ( Nc (x ×
y) = Nc ∅ ↔ (x
× y) ≈ ∅) | 
| 13 |   | en0 6043 | 
. . . . . . . 8
⊢ ((x × y)
≈ ∅ ↔ (x × y) =
∅) | 
| 14 | 12, 13 | bitri 240 | 
. . . . . . 7
⊢ ( Nc (x ×
y) = Nc ∅ ↔ (x
× y) = ∅) | 
| 15 |   | xpeq0 5047 | 
. . . . . . . 8
⊢ ((x × y) =
∅ ↔ (x = ∅  ∨ y = ∅)) | 
| 16 |   | nceq 6109 | 
. . . . . . . . 9
⊢ (x = ∅ →
Nc x = Nc ∅) | 
| 17 |   | nceq 6109 | 
. . . . . . . . 9
⊢ (y = ∅ →
Nc y = Nc ∅) | 
| 18 | 16, 17 | orim12i 502 | 
. . . . . . . 8
⊢ ((x = ∅  ∨ y = ∅) → ( Nc
x = Nc ∅  ∨ Nc y = Nc ∅)) | 
| 19 | 15, 18 | sylbi 187 | 
. . . . . . 7
⊢ ((x × y) =
∅ → ( Nc
x = Nc ∅  ∨ Nc y = Nc ∅)) | 
| 20 | 14, 19 | sylbi 187 | 
. . . . . 6
⊢ ( Nc (x ×
y) = Nc ∅ → ( Nc
x = Nc ∅  ∨ Nc y = Nc ∅)) | 
| 21 | 10, 20 | sylbi 187 | 
. . . . 5
⊢ (( Nc x
·c Nc y) = 0c → ( Nc x = Nc ∅  ∨ Nc y = Nc ∅)) | 
| 22 |   | oveq12 5533 | 
. . . . . . 7
⊢ ((A = Nc x ∧ B = Nc y) → (A
·c B) = ( Nc x
·c Nc y)) | 
| 23 | 22 | eqeq1d 2361 | 
. . . . . 6
⊢ ((A = Nc x ∧ B = Nc y) → ((A
·c B) =
0c ↔ ( Nc x ·c Nc y) =
0c)) | 
| 24 |   | eqeq1 2359 | 
. . . . . . . . 9
⊢ (A = Nc x → (A =
0c ↔ Nc x = 0c)) | 
| 25 | 24 | adantr 451 | 
. . . . . . . 8
⊢ ((A = Nc x ∧ B = Nc y) → (A =
0c ↔ Nc x = 0c)) | 
| 26 | 9 | eqeq2i 2363 | 
. . . . . . . 8
⊢ ( Nc x =
0c ↔ Nc x = Nc ∅) | 
| 27 | 25, 26 | syl6bb 252 | 
. . . . . . 7
⊢ ((A = Nc x ∧ B = Nc y) → (A =
0c ↔ Nc x = Nc ∅)) | 
| 28 |   | eqeq1 2359 | 
. . . . . . . . 9
⊢ (B = Nc y → (B =
0c ↔ Nc y = 0c)) | 
| 29 | 9 | eqeq2i 2363 | 
. . . . . . . . 9
⊢ ( Nc y =
0c ↔ Nc y = Nc ∅) | 
| 30 | 28, 29 | syl6bb 252 | 
. . . . . . . 8
⊢ (B = Nc y → (B =
0c ↔ Nc y = Nc ∅)) | 
| 31 | 30 | adantl 452 | 
. . . . . . 7
⊢ ((A = Nc x ∧ B = Nc y) → (B =
0c ↔ Nc y = Nc ∅)) | 
| 32 | 27, 31 | orbi12d 690 | 
. . . . . 6
⊢ ((A = Nc x ∧ B = Nc y) → ((A =
0c  ∨ B = 0c) ↔ ( Nc x = Nc ∅  ∨ Nc y = Nc ∅))) | 
| 33 | 23, 32 | imbi12d 311 | 
. . . . 5
⊢ ((A = Nc x ∧ B = Nc y) → (((A
·c B) =
0c → (A =
0c  ∨ B = 0c)) ↔ (( Nc x
·c Nc y) = 0c → ( Nc x = Nc ∅  ∨ Nc y = Nc ∅)))) | 
| 34 | 21, 33 | mpbiri 224 | 
. . . 4
⊢ ((A = Nc x ∧ B = Nc y) → ((A
·c B) =
0c → (A =
0c  ∨ B = 0c))) | 
| 35 | 34 | exlimivv 1635 | 
. . 3
⊢ (∃x∃y(A = Nc x ∧ B = Nc y) → ((A
·c B) =
0c → (A =
0c  ∨ B = 0c))) | 
| 36 | 5, 35 | sylbi 187 | 
. 2
⊢ ((A ∈ NC ∧ B ∈ NC ) → ((A
·c B) =
0c → (A =
0c  ∨ B = 0c))) | 
| 37 |   | 0cnc 6139 | 
. . . . . . 7
⊢
0c ∈ NC | 
| 38 |   | muccom 6135 | 
. . . . . . 7
⊢
((0c ∈ NC ∧ B ∈ NC ) → (0c
·c B) = (B ·c
0c)) | 
| 39 | 37, 38 | mpan 651 | 
. . . . . 6
⊢ (B ∈ NC → (0c
·c B) = (B ·c
0c)) | 
| 40 |   | muc0 6143 | 
. . . . . 6
⊢ (B ∈ NC → (B
·c 0c) =
0c) | 
| 41 | 39, 40 | eqtrd 2385 | 
. . . . 5
⊢ (B ∈ NC → (0c
·c B) =
0c) | 
| 42 |   | oveq1 5531 | 
. . . . . 6
⊢ (A = 0c → (A ·c B) = (0c
·c B)) | 
| 43 | 42 | eqeq1d 2361 | 
. . . . 5
⊢ (A = 0c → ((A ·c B) = 0c ↔
(0c ·c B) = 0c)) | 
| 44 | 41, 43 | syl5ibrcom 213 | 
. . . 4
⊢ (B ∈ NC → (A =
0c → (A
·c B) =
0c)) | 
| 45 | 44 | adantl 452 | 
. . 3
⊢ ((A ∈ NC ∧ B ∈ NC ) → (A =
0c → (A
·c B) =
0c)) | 
| 46 |   | muc0 6143 | 
. . . . 5
⊢ (A ∈ NC → (A
·c 0c) =
0c) | 
| 47 |   | oveq2 5532 | 
. . . . . 6
⊢ (B = 0c → (A ·c B) = (A
·c 0c)) | 
| 48 | 47 | eqeq1d 2361 | 
. . . . 5
⊢ (B = 0c → ((A ·c B) = 0c ↔ (A ·c 0c)
= 0c)) | 
| 49 | 46, 48 | syl5ibrcom 213 | 
. . . 4
⊢ (A ∈ NC → (B =
0c → (A
·c B) =
0c)) | 
| 50 | 49 | adantr 451 | 
. . 3
⊢ ((A ∈ NC ∧ B ∈ NC ) → (B =
0c → (A
·c B) =
0c)) | 
| 51 | 45, 50 | jaod 369 | 
. 2
⊢ ((A ∈ NC ∧ B ∈ NC ) → ((A =
0c  ∨ B = 0c) → (A ·c B) = 0c)) | 
| 52 | 36, 51 | impbid 183 | 
1
⊢ ((A ∈ NC ∧ B ∈ NC ) → ((A
·c B) =
0c ↔ (A =
0c  ∨ B = 0c))) |