New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opklefing | Unicode version |
Description: Kuratowski ordered pair membership in finite less than or equal to. (Contributed by SF, 18-Jan-2015.) |
Ref | Expression |
---|---|
opklefing | fin Nn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lefin 4441 | . 2 fin Nn | |
2 | addceq1 4384 | . . . 4 | |
3 | 2 | eqeq2d 2364 | . . 3 |
4 | 3 | rexbidv 2636 | . 2 Nn Nn |
5 | eqeq1 2359 | . . 3 | |
6 | 5 | rexbidv 2636 | . 2 Nn Nn |
7 | 1, 4, 6 | opkelopkabg 4246 | 1 fin Nn |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wceq 1642 wcel 1710 wrex 2616 copk 4058 Nn cnnc 4374 cplc 4376 fin clefin 4433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-pw1 4138 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-sik 4193 df-ssetk 4194 df-addc 4379 df-lefin 4441 |
This theorem is referenced by: lefinaddc 4451 nulge 4457 leltfintr 4459 lefinlteq 4464 ltfintri 4467 lefinrflx 4468 ltlefin 4469 vfinspsslem1 4551 |
Copyright terms: Public domain | W3C validator |