NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  opkltfing Unicode version

Theorem opkltfing 4450
Description: Kuratowski ordered pair membership in finite less than. (Contributed by SF, 27-Jan-2015.)
Assertion
Ref Expression
opkltfing <fin Nn 1c
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem opkltfing
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltfin 4442 . 2 <fin Nn 1c
2 neeq1 2525 . . 3
3 addceq1 4384 . . . . . 6
43addceq1d 4390 . . . . 5 1c 1c
54eqeq2d 2364 . . . 4 1c 1c
65rexbidv 2636 . . 3 Nn 1c Nn 1c
72, 6anbi12d 691 . 2 Nn 1c Nn 1c
8 eqeq1 2359 . . . 4 1c 1c
98rexbidv 2636 . . 3 Nn 1c Nn 1c
109anbi2d 684 . 2 Nn 1c Nn 1c
111, 7, 10opkelopkabg 4246 1 <fin Nn 1c
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   wceq 1642   wcel 1710   wne 2517  wrex 2616  c0 3551  copk 4058  1cc1c 4135   Nn cnnc 4374   cplc 4376   <fin cltfin 4434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-pw1 4138  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-sik 4193  df-ssetk 4194  df-addc 4379  df-ltfin 4442
This theorem is referenced by:  ltfinirr  4458  leltfintr  4459  ltfintr  4460  ltfinp1  4463  lefinlteq  4464  ltfintri  4467  ltlefin  4469  tfinltfinlem1  4501  tfinltfin  4502  sfinltfin  4536
  Copyright terms: Public domain W3C validator