| Step | Hyp | Ref
| Expression |
| 1 | | snex 4112 |
. . 3
⊢ {{A}} ∈
V |
| 2 | | opkex 4114 |
. . 3
⊢ ⟪B, C⟫
∈ V |
| 3 | | opkelins3kg 4253 |
. . 3
⊢ (({{A}} ∈ V ∧ ⟪B,
C⟫ ∈ V) → (⟪{{A}}, ⟪B,
C⟫⟫ ∈ Ins3k D ↔ ∃x∃y∃z({{A}} = {{x}}
∧ ⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, y⟫ ∈
D))) |
| 4 | 1, 2, 3 | mp2an 653 |
. 2
⊢ (⟪{{A}}, ⟪B,
C⟫⟫ ∈ Ins3k D ↔ ∃x∃y∃z({{A}} = {{x}}
∧ ⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, y⟫ ∈
D)) |
| 5 | | 3anass 938 |
. . . . . . . . 9
⊢ (({{A}} = {{x}}
∧ ⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, y⟫ ∈
D) ↔ ({{A}} = {{x}}
∧ (⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, y⟫ ∈
D))) |
| 6 | | eqcom 2355 |
. . . . . . . . . . 11
⊢ ({{A}} = {{x}}
↔ {{x}} = {{A}}) |
| 7 | | snex 4112 |
. . . . . . . . . . . . 13
⊢ {x} ∈
V |
| 8 | 7 | sneqb 3877 |
. . . . . . . . . . . 12
⊢ ({{x}} = {{A}}
↔ {x} = {A}) |
| 9 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ x ∈
V |
| 10 | 9 | sneqb 3877 |
. . . . . . . . . . . 12
⊢ ({x} = {A} ↔
x = A) |
| 11 | 8, 10 | bitri 240 |
. . . . . . . . . . 11
⊢ ({{x}} = {{A}}
↔ x = A) |
| 12 | 6, 11 | bitri 240 |
. . . . . . . . . 10
⊢ ({{A}} = {{x}}
↔ x = A) |
| 13 | 12 | anbi1i 676 |
. . . . . . . . 9
⊢ (({{A}} = {{x}}
∧ (⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, y⟫ ∈
D)) ↔ (x = A ∧ (⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, y⟫
∈ D))) |
| 14 | 5, 13 | bitri 240 |
. . . . . . . 8
⊢ (({{A}} = {{x}}
∧ ⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, y⟫ ∈
D) ↔ (x = A ∧ (⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, y⟫
∈ D))) |
| 15 | 14 | 2exbii 1583 |
. . . . . . 7
⊢ (∃y∃z({{A}} = {{x}}
∧ ⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, y⟫ ∈
D) ↔ ∃y∃z(x = A ∧ (⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, y⟫
∈ D))) |
| 16 | | 19.42vv 1907 |
. . . . . . 7
⊢ (∃y∃z(x = A ∧ (⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, y⟫
∈ D))
↔ (x = A ∧ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, y⟫
∈ D))) |
| 17 | 15, 16 | bitri 240 |
. . . . . 6
⊢ (∃y∃z({{A}} = {{x}}
∧ ⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, y⟫ ∈
D) ↔ (x = A ∧ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, y⟫
∈ D))) |
| 18 | 17 | exbii 1582 |
. . . . 5
⊢ (∃x∃y∃z({{A}} = {{x}}
∧ ⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, y⟫ ∈
D) ↔ ∃x(x = A ∧ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, y⟫
∈ D))) |
| 19 | | opkeq1 4060 |
. . . . . . . . 9
⊢ (x = A →
⟪x, y⟫ = ⟪A, y⟫) |
| 20 | 19 | eleq1d 2419 |
. . . . . . . 8
⊢ (x = A →
(⟪x, y⟫ ∈
D ↔ ⟪A, y⟫
∈ D)) |
| 21 | 20 | anbi2d 684 |
. . . . . . 7
⊢ (x = A →
((⟪B, C⟫ = ⟪y, z⟫
∧ ⟪x, y⟫
∈ D)
↔ (⟪B, C⟫ = ⟪y, z⟫
∧ ⟪A, y⟫
∈ D))) |
| 22 | 21 | 2exbidv 1628 |
. . . . . 6
⊢ (x = A →
(∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, y⟫
∈ D)
↔ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪A, y⟫
∈ D))) |
| 23 | 22 | ceqsexgv 2972 |
. . . . 5
⊢ (A ∈ V → (∃x(x = A ∧ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, y⟫
∈ D))
↔ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪A, y⟫
∈ D))) |
| 24 | 18, 23 | syl5bb 248 |
. . . 4
⊢ (A ∈ V → (∃x∃y∃z({{A}} = {{x}}
∧ ⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, y⟫ ∈
D) ↔ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪A, y⟫
∈ D))) |
| 25 | 24 | 3ad2ant1 976 |
. . 3
⊢ ((A ∈ V ∧ B ∈ W ∧ C ∈ T) → (∃x∃y∃z({{A}} = {{x}}
∧ ⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, y⟫ ∈
D) ↔ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪A, y⟫
∈ D))) |
| 26 | | eqcom 2355 |
. . . . . . . . . . 11
⊢ (⟪B, C⟫ =
⟪y, z⟫ ↔ ⟪y, z⟫ =
⟪B, C⟫) |
| 27 | | vex 2863 |
. . . . . . . . . . . 12
⊢ y ∈
V |
| 28 | | vex 2863 |
. . . . . . . . . . . 12
⊢ z ∈
V |
| 29 | | opkthg 4132 |
. . . . . . . . . . . 12
⊢ ((y ∈ V ∧ z ∈ V ∧ C ∈ T) → (⟪y, z⟫ =
⟪B, C⟫ ↔ (y = B ∧ z = C))) |
| 30 | 27, 28, 29 | mp3an12 1267 |
. . . . . . . . . . 11
⊢ (C ∈ T → (⟪y, z⟫ =
⟪B, C⟫ ↔ (y = B ∧ z = C))) |
| 31 | 26, 30 | syl5bb 248 |
. . . . . . . . . 10
⊢ (C ∈ T → (⟪B, C⟫ =
⟪y, z⟫ ↔ (y = B ∧ z = C))) |
| 32 | 31 | anbi1d 685 |
. . . . . . . . 9
⊢ (C ∈ T → ((⟪B, C⟫ =
⟪y, z⟫ ∧
⟪A, y⟫ ∈
D) ↔ ((y = B ∧ z = C) ∧
⟪A, y⟫ ∈
D))) |
| 33 | | anass 630 |
. . . . . . . . 9
⊢ (((y = B ∧ z = C) ∧
⟪A, y⟫ ∈
D) ↔ (y = B ∧ (z = C ∧
⟪A, y⟫ ∈
D))) |
| 34 | 32, 33 | syl6bb 252 |
. . . . . . . 8
⊢ (C ∈ T → ((⟪B, C⟫ =
⟪y, z⟫ ∧
⟪A, y⟫ ∈
D) ↔ (y = B ∧ (z = C ∧
⟪A, y⟫ ∈
D)))) |
| 35 | 34 | 2exbidv 1628 |
. . . . . . 7
⊢ (C ∈ T → (∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪A, y⟫
∈ D)
↔ ∃y∃z(y = B ∧ (z = C ∧ ⟪A,
y⟫ ∈ D)))) |
| 36 | | exdistr 1906 |
. . . . . . 7
⊢ (∃y∃z(y = B ∧ (z = C ∧
⟪A, y⟫ ∈
D)) ↔ ∃y(y = B ∧ ∃z(z = C ∧
⟪A, y⟫ ∈
D))) |
| 37 | 35, 36 | syl6bb 252 |
. . . . . 6
⊢ (C ∈ T → (∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪A, y⟫
∈ D)
↔ ∃y(y = B ∧ ∃z(z = C ∧ ⟪A,
y⟫ ∈ D)))) |
| 38 | 37 | adantl 452 |
. . . . 5
⊢ ((B ∈ W ∧ C ∈ T) → (∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪A, y⟫
∈ D)
↔ ∃y(y = B ∧ ∃z(z = C ∧ ⟪A,
y⟫ ∈ D)))) |
| 39 | | opkeq2 4061 |
. . . . . . . . . 10
⊢ (y = B →
⟪A, y⟫ = ⟪A, B⟫) |
| 40 | 39 | eleq1d 2419 |
. . . . . . . . 9
⊢ (y = B →
(⟪A, y⟫ ∈
D ↔ ⟪A, B⟫
∈ D)) |
| 41 | 40 | anbi2d 684 |
. . . . . . . 8
⊢ (y = B →
((z = C
∧ ⟪A, y⟫
∈ D)
↔ (z = C ∧
⟪A, B⟫ ∈
D))) |
| 42 | 41 | exbidv 1626 |
. . . . . . 7
⊢ (y = B →
(∃z(z = C ∧
⟪A, y⟫ ∈
D) ↔ ∃z(z = C ∧ ⟪A,
B⟫ ∈ D))) |
| 43 | 42 | ceqsexgv 2972 |
. . . . . 6
⊢ (B ∈ W → (∃y(y = B ∧ ∃z(z = C ∧
⟪A, y⟫ ∈
D)) ↔ ∃z(z = C ∧ ⟪A,
B⟫ ∈ D))) |
| 44 | | biidd 228 |
. . . . . . 7
⊢ (z = C →
(⟪A, B⟫ ∈
D ↔ ⟪A, B⟫
∈ D)) |
| 45 | 44 | ceqsexgv 2972 |
. . . . . 6
⊢ (C ∈ T → (∃z(z = C ∧ ⟪A,
B⟫ ∈ D) ↔
⟪A, B⟫ ∈
D)) |
| 46 | 43, 45 | sylan9bb 680 |
. . . . 5
⊢ ((B ∈ W ∧ C ∈ T) → (∃y(y = B ∧ ∃z(z = C ∧
⟪A, y⟫ ∈
D)) ↔ ⟪A, B⟫
∈ D)) |
| 47 | 38, 46 | bitrd 244 |
. . . 4
⊢ ((B ∈ W ∧ C ∈ T) → (∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪A, y⟫
∈ D)
↔ ⟪A, B⟫ ∈
D)) |
| 48 | 47 | 3adant1 973 |
. . 3
⊢ ((A ∈ V ∧ B ∈ W ∧ C ∈ T) → (∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪A, y⟫
∈ D)
↔ ⟪A, B⟫ ∈
D)) |
| 49 | 25, 48 | bitrd 244 |
. 2
⊢ ((A ∈ V ∧ B ∈ W ∧ C ∈ T) → (∃x∃y∃z({{A}} = {{x}}
∧ ⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, y⟫ ∈
D) ↔ ⟪A, B⟫
∈ D)) |
| 50 | 4, 49 | syl5bb 248 |
1
⊢ ((A ∈ V ∧ B ∈ W ∧ C ∈ T) → (⟪{{A}}, ⟪B,
C⟫⟫ ∈ Ins3k D ↔ ⟪A, B⟫
∈ D)) |