![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > 3ad2ant1 | Unicode version |
Description: Deduction adding conjuncts to an antecedent. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
3ad2ant.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3ad2ant1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2ant.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 451 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | 3adant2 974 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: simp1l 979 simp1r 980 simp11 985 simp12 986 simp13 987 simp1ll 1018 simp1lr 1019 simp1rl 1020 simp1rr 1021 simp1l1 1048 simp1l2 1049 simp1l3 1050 simp1r1 1051 simp1r2 1052 simp1r3 1053 simp11l 1066 simp11r 1067 simp12l 1068 simp12r 1069 simp13l 1070 simp13r 1071 simp111 1084 simp112 1085 simp113 1086 simp121 1087 simp122 1088 simp123 1089 simp131 1090 simp132 1091 simp133 1092 3anim123i 1137 3jaao 1249 ceqsalt 2881 sbciegft 3076 reupick2 3541 otkelins2kg 4253 otkelins3kg 4254 nnsucelrlem3 4426 ssfin 4470 ncfinlower 4483 tfin11 4493 nnpweq 4523 sfinltfin 4535 vfintle 4546 vfinncvntnn 4548 peano4 4557 funprg 5149 funprgOLD 5150 fvun1 5379 fvopab4t 5385 po0 5939 nenpw1pwlem2 6085 ceclnn1 6189 nclenc 6222 lenc 6223 taddc 6229 letc 6231 nclenn 6249 addcdi 6250 spaccl 6286 nchoicelem17 6305 |
Copyright terms: Public domain | W3C validator |