NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  setconslem5 Unicode version

Theorem setconslem5 4736
Description: Lemma for set construction theorems. The big expression in the middle of setconslem4 4735 forms a set. (Contributed by SF, 7-Jan-2015.)
Assertion
Ref Expression
setconslem5 Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k Ins2k Ins2k Sk Ins3k SIk Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1c

Proof of Theorem setconslem5
StepHypRef Expression
1 ssetkex 4295 . . . . . . 7 Sk
21sikex 4298 . . . . . 6 SIk Sk
32sikex 4298 . . . . 5 SIk SIk Sk
43ins3kex 4309 . . . 4 Ins3k SIk SIk Sk
5 addcexlem 4383 . . . . . . . . . . . . . . 15 Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1c
6 1cex 4143 . . . . . . . . . . . . . . . . 17 1c
76pw1ex 4304 . . . . . . . . . . . . . . . 16 1 1c
87pw1ex 4304 . . . . . . . . . . . . . . 15 1 1 1c
95, 8imakex 4301 . . . . . . . . . . . . . 14 Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c
109imagekex 4313 . . . . . . . . . . . . 13 Imagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c
11 nncex 4397 . . . . . . . . . . . . . 14 Nn
12 vvex 4110 . . . . . . . . . . . . . 14
1311, 12xpkex 4290 . . . . . . . . . . . . 13 Nn k
1410, 13inex 4106 . . . . . . . . . . . 12 Imagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k
15 idkex 4315 . . . . . . . . . . . . 13 k
1611complex 4105 . . . . . . . . . . . . . 14 Nn
1716, 12xpkex 4290 . . . . . . . . . . . . 13 Nn k
1815, 17inex 4106 . . . . . . . . . . . 12 k Nn k
1914, 18unex 4107 . . . . . . . . . . 11 Imagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k
2019imagekex 4313 . . . . . . . . . 10 ImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k
2120cnvkex 4288 . . . . . . . . 9 kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k
2221sikex 4298 . . . . . . . 8 SIk kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k
231, 22cokex 4311 . . . . . . 7 Sk k SIk kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k
2423ins3kex 4309 . . . . . 6 Ins3k Sk k SIk kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k
251ins2kex 4308 . . . . . . . . 9 Ins2k Sk
2621, 1cokex 4311 . . . . . . . . . . . . . . . 16 kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk
27 snex 4112 . . . . . . . . . . . . . . . . 17 0c
2827, 12xpkex 4290 . . . . . . . . . . . . . . . 16 0c k
2926, 28unex 4107 . . . . . . . . . . . . . . 15 kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k
3029ins3kex 4309 . . . . . . . . . . . . . 14 Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k
3125, 30symdifex 4109 . . . . . . . . . . . . 13 Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k
3231, 8imakex 4301 . . . . . . . . . . . 12 Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k k1 1 1c
3332complex 4105 . . . . . . . . . . 11 Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k k1 1 1c
3433sikex 4298 . . . . . . . . . 10 SIk Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k k1 1 1c
3534ins3kex 4309 . . . . . . . . 9 Ins3k SIk Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k k1 1 1c
3625, 35inex 4106 . . . . . . . 8 Ins2k Sk Ins3k SIk Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k k1 1 1c
3736, 8imakex 4301 . . . . . . 7 Ins2k Sk Ins3k SIk Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k k1 1 1ck1 1 1c
3837ins2kex 4308 . . . . . 6 Ins2k Ins2k Sk Ins3k SIk Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k k1 1 1ck1 1 1c
3924, 38unex 4107 . . . . 5 Ins3k Sk k SIk kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k Ins2k Ins2k Sk Ins3k SIk Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k k1 1 1ck1 1 1c
4039ins2kex 4308 . . . 4 Ins2k Ins3k Sk k SIk kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k Ins2k Ins2k Sk Ins3k SIk Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k k1 1 1ck1 1 1c
414, 40symdifex 4109 . . 3 Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k Ins2k Ins2k Sk Ins3k SIk Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k k1 1 1ck1 1 1c
428pw1ex 4304 . . . 4 1 1 1 1c
4342pw1ex 4304 . . 3 1 1 1 1 1c
4441, 43imakex 4301 . 2 Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k Ins2k Ins2k Sk Ins3k SIk Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1c
4544complex 4105 1 Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k Ins2k Ins2k Sk Ins3k SIk Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1c
Colors of variables: wff setvar class
Syntax hints:   wcel 1710  cvv 2860   ∼ ccompl 3206   cdif 3207   cun 3208   cin 3209   csymdif 3210  csn 3738  1cc1c 4135  1 cpw1 4136   k cxpk 4175  kccnvk 4176   Ins2k cins2k 4177   Ins3k cins3k 4178  kcimak 4180   k ccomk 4181   SIk csik 4182  Imagekcimagek 4183   Sk cssetk 4184   k cidk 4185   Nn cnnc 4374  0cc0c 4375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380
This theorem is referenced by:  1stex  4740  ssetex  4745  imaexg  4747  coexg  4750  siexg  4753
  Copyright terms: Public domain W3C validator