Proof of Theorem ssetex
Step | Hyp | Ref
| Expression |
1 | | dfsset2 4744 |
. 2
S ⋃1⋃1 k
k
k ∼
Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1ck Sk
|
2 | | vvex 4110 |
. . . . . . . 8
|
3 | 2, 2 | xpkex 4290 |
. . . . . . 7
k
|
4 | 3, 2 | xpkex 4290 |
. . . . . 6
k
k
|
5 | | setconslem5 4736 |
. . . . . . 7
∼ Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1c
|
6 | 5 | cnvkex 4288 |
. . . . . 6
k
∼ Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1c
|
7 | 4, 6 | inex 4106 |
. . . . 5
k k
k
∼ Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1c
|
8 | | ssetkex 4295 |
. . . . 5
Sk |
9 | 7, 8 | imakex 4301 |
. . . 4
k k
k
∼ Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1ck Sk
|
10 | 9 | uni1ex 4294 |
. . 3
⋃1 k k
k
∼ Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1ck Sk
|
11 | 10 | uni1ex 4294 |
. 2
⋃1⋃1 k
k
k ∼
Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1ck Sk
|
12 | 1, 11 | eqeltri 2423 |
1
S |