New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpbiran | GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) |
Ref | Expression |
---|---|
mpbiran.1 | ⊢ ψ |
mpbiran.2 | ⊢ (φ ↔ (ψ ∧ χ)) |
Ref | Expression |
---|---|
mpbiran | ⊢ (φ ↔ χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran.2 | . 2 ⊢ (φ ↔ (ψ ∧ χ)) | |
2 | mpbiran.1 | . . 3 ⊢ ψ | |
3 | 2 | biantrur 492 | . 2 ⊢ (χ ↔ (ψ ∧ χ)) |
4 | 1, 3 | bitr4i 243 | 1 ⊢ (φ ↔ χ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: mpbir2an 886 pm5.63 890 ddif 3399 dfun2 3491 dfin2 3492 0pss 3589 pssv 3591 disj4 3600 cnvkexg 4287 ssetkex 4295 sikexg 4297 ins2kexg 4306 ins3kexg 4307 nnsucelrlem1 4425 ncfinlowerlem1 4483 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 opabn0 4717 setconslem6 4737 fnres 5200 dmsi 5520 otelins2 5792 composeex 5821 dmpprod 5841 crossex 5851 transex 5911 enmap2 6069 csucex 6260 nmembers1lem1 6269 nchoicelem18 6307 dmfrec 6317 fnfreclem1 6318 |
Copyright terms: Public domain | W3C validator |